• Title/Summary/Keyword: Ligninolytic enzymes

Search Result 42, Processing Time 0.019 seconds

Production of manganese peroxidase from Pleurotus ostreatus using a rotary draft tube bioreactor (RTB) and characterization of its activity (회전식 통풍관 생물반응기 사용에 따른 느타리균의 manganese peroxidase 생산 및 특성)

  • Ha, Hyo-Cheol
    • Journal of Mushroom
    • /
    • v.19 no.4
    • /
    • pp.316-321
    • /
    • 2021
  • Ligninolytic enzymes were produced by Pleurotus ostreatus No.42, cultivated in a new kind of bioreactor that has a rotating draft tube with a helical ribbon. Maximum laccase (Lac) production (about 8,200 U/bioreactor) was reached after 3 days of incubation, then production decreased. Production of manganese peroxidase (MnP) in this fermenter reached a maximum level of about 8,400 U/bioreactor after 6 days of incubation. Lignin peroxidase (LiP) was not detected under these growth conditions. These results indicate that the rotary draft tube bioreactor (RTB) is compatible with large scale production of ligninolytic enzymes. MnP produced under these fermentation conditions was purified via a multistep process that included chromatography on Sepharose CL-6B, prep grade Superdex 75, and Mono-Q. This major isoenzyme was confirmed to have an apparent molecular weight of 36,400 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and its isoelectric point (IEF) was determined to be 3.95. N-terminal sequencing of the major isoenzyme from this fermentation was identical to that reported for an MnP3 isoenzyme isolated under different cultivation conditions, including stationary and shaking culture.

Biodegradation and Saccharification of Wood Chips of Pinus strobus and Liriodendron tulipifera by White Rot Fungi

  • Hwang, Soon-Seok;Lee, Sung-Jae;Kim, Hee-Kyu;Ka, Jong-Ok;Kim, Kyu-Joong;Song, Hong-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.11
    • /
    • pp.1819-1825
    • /
    • 2008
  • Degradation and glucose production from wood chips of white pine (Pinus strobus) and tulip tree (Liriodendron tulipifera) by several white rot fungi were investigated. The highest weight losses from 4 g of wood chips of P. strobus and L. tulipifera by the fungal degradation on yeast extract-malt extract-glucose agar medium were 38% of Irpex lacteus and 93.7% of Trametes versicolor MrP 1 after 90 days, respectively. When 4 g of wood chips of P. strobus and L. tulipifera biodegraded for 30 days were treated with cellulase, glucose was recovered at the highest values of 106 mg/g degraded wood by I. lacteus and 450 mg/g degraded wood by T. versicolor. The weight loss of 10 g of wood chip of L. tulipifera by T. versicolor on the nutrient non-added agar under the nonsterile conditions was 35% during 7 weeks of incubation, and the cumulative amount of glucose produced during this period was 239 mg without cellulase treatment. The activities of ligninolytic enzymes (lignin peroxidase, manganese peroxidase, and laccase) of fungi tested did not show a high correlation with degradation of the wood chips and subsequent glucose formation. These results suggest that the selection of proper wood species and fungal strain and optimization of glucose recovery are all necessary for the fungal pretreatment of woody biomass as a carbon substrate.

Trametes villosa Lignin Peroxidase (TvLiP): Genetic and Molecular Characterization

  • Carneiro, Rita Terezinha de Oliveira;Lopes, Maiza Alves;Silva, Marilia Lordelo Cardoso;Santos, Veronica da Silva;Souza, Volnei Brito de;Sousa, Aurizangela Oliveira de;Pirovani, Carlos Priminho;Koblitz, Maria Gabriela Bello;Benevides, Raquel Guimaraes;Goes-Neto, Aristoteles
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.179-188
    • /
    • 2017
  • White-rot basidiomycetes are the organisms that decompose lignin most efficiently, and Trametes villosa is a promising species for ligninolytic enzyme production. There are several publications on T. villosa applications for lignin degradation regarding the expression and secretion of laccase and manganese peroxidase (MnP) but no reports on the identification and characterization of lignin peroxidase (LiP), a relevant enzyme for the efficient breakdown of lignin. The object of this study was to identify and partially characterize, for the first time, gDNA, mRNA, and the corresponding lignin peroxidase (TvLiP) protein from T. villosa strain CCMB561 from the Brazilian semiarid region. The presence of ligninolytic enzymes produced by this strain grown in inducer media was qualitatively and quantitatively analyzed by spectrophotometry, qPCR, and dye fading using Remazol Brilliant Blue R. The spectrophotometric analysis showed that LiP activity was higher than that of MnP. The greatest LiP expression as measured by qPCR occurred on the $7^{th}$ day, and the ABSA medium (agar, sugarcane bagasse, and ammonium sulfate) was the best that favored LiP expression. The amplification of the TvLiP gene median region covering approximately 50% of the T. versicolor LPGIV gene (87% identity); the presence of Trp199, Leu115, Asp193, Trp199, and Ala203 in the translated amplicon of the T. villosa mRNA; and the close phylogenetic relationship between TvLiP and T. versicolor LiP all indicate that the target enzyme is a lignin peroxidase. Therefore, T. villosa CCMB561 has great potential for use as a LiP, MnP, and Lac producer for industrial applications.

Biodegradation of aromatic dyes and bisphenol A by Trametes hirsuta (Wulfen) Pilat (흰구름버섯에 의한 방향족 염료와 비스페놀 A의 분해)

  • Im, Kyung-Hoan;Baek, Seung-A;Choi, Jae-hyuk;Lee, Tae-Soo
    • Journal of Mushroom
    • /
    • v.17 no.4
    • /
    • pp.247-254
    • /
    • 2019
  • Trametes hirsuta, a white rot fungus, exhibits the ability to degrade synthetic aromatic dyes such as congo red (CR), methylene blue (MB), crystal violet (CV), and remazol brilliant blue R (RBBR). The mycelia of T. hirsuta degraded RBBR and CR more efficiently than CV and MB in the PDB liquid medium (supplemented with 0.01% 4 aromatic dyes). In these mycelia the activities of three ligninolytic enzymes-laccase, manganese peroxidase (MnP), and lignin peroxidase (LiP)-were observed. Among these, laccase was identified to be the major enzyme responsible for the degradation of the four aromatic dyes. The degradation of bisphenol A was also investigated by culturing the mycelia of T. hirsuta in YMG medium supplemented with 100 ppm bisphenol A. The mycelia of T. hirsuta were found to degrade bisphenol A by 71.3, 95.3, and 100 % within incubation periods of 12, 24, and 36 hr, respectively. These mycelia also showed ligninolytic enzyme-like activities including those similar to laccase, MnP, and LiP. Therefore, these results indicate that T. hirsuta could emerge as a potential tool for the remediation of environmental contamination by aromatic dyes and bisphenol A.

Production of Mn-peroxidase and Laccase from Lentinus edodes and Coriolus versicolor (표고 및 구름버섯으로부터 Mn-peroxidase와 Laccase의 생산(生産))

  • Bae, Hyeun-Jong;Han, Ok-Soo;Koh, Hong-Bum;Kim, Yoon-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.87-93
    • /
    • 1993
  • This study was undertaken to investigate the characteristics and the productivities of lignin olytic enzymes: laccase (Lac) and Mn-dependent peroxidase (MnP) from Coriolus versicolor and Lentinus edodes respectively. Enzymes were isolated from cultural filterates and purified according to the standard methods. These enzymes showed one band in SDS-PAGE and their molecular weights were found 62,000 and 45,000 dalton respectively. Polyclonal antibodies against Lac and MnP were raised against mouse. In the ELISA (enzyme-linked immunosorbent assay), Lac and MnP-antiserum produced a strong positive reaction with Lac and MnP antigen($A_{405}$=2.50 and 3.53 respectively). The sera to negative (S/N) ratio was determined by the dividing the mean absorbance of antibodies by the corresponding diluted samples from normal mouse serum. The sera produced showed 2 times more positive reaction in S/N ratio than negative sera.

  • PDF

Decolorization of Three Acid Dyes by Enzymes from Fungal Strains

  • PARK , CHUL-HWAN;LEE, YU-RI;KIM, TAK-HYUN;LEE, BYUNG-HWAN;LEE, JIN-WON;KIM, SANG-YONG
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1190-1195
    • /
    • 2004
  • In recent years, there has been an intensive research on decolorization of dye and textile wastewater by various fungal strains. In this study, the decolorization ability of three commercial dyes, acid yellow 99, acid blue 350, and acid red 114, were investigated using 10 fungal strains. Among the fungal strains tested, Trametes versicolor KCTC 16781 completely decolorized all dyes in both solid and liquid experiments, and was also able to decolorize the mixture of those three dyes in liquid experiments. The secretion of the ligninolytic enzymes into the extracellular medium during decolorization by T versicolor KCTC 16781 was also studied. No lignin peroxidase activity was detected, and manganese peroxidase and laccase activities were investigated.

Biochemical and Molecular Characterization of Laccases from Wild Mushrooms

  • Ro, Hyeon-Su
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.05a
    • /
    • pp.43-43
    • /
    • 2014
  • White rot fungi have been useful source of enzymes for the degradation of environmental pollutants including polycyclic aromatic hydrocarbons (PAHs) and synthetic dyes. PAHs are widespread organic compounds present in fossil fuels and are routinely generated by incomplete fuel combustion. PAHs are some of the major toxic pollutants of water and soil environments. Synthetic dyes are major water-pollutants, which are toxic to organisms in water environments and interfere photosynthesis of water plants. Removal of PAHs and synthetic dyes has been of interests in the environmental science especially in the environmental microbiology. Mushrooms are fungal groups that function as primary degraders of wood polyphenolic lignin. The ligninolytic enzymes produced by mushroom, including manganese peroxidase, lignin peroxidase, and laccase, mediate the oxidative degradation of lignin. The catalytic power of these enzymes in the degradation of aromatic ring compounds has been sought for the degradation of various organic compounds. In this project, we have screened 60 wild mushroom strains for their degradation activity against two representative PAHs, naphthalene and anthracene, and five aromatic dyes, including alizarin red S, crystal violet, malachite green, methylene blue, rose bengal. The degradation of PAHs was measured by GC while the decolorization of dyes was measured by both UV spectrophotometer and HPLC. As results, 9 wild mushroom strains showed high activity in degradation of PAHs and textile dyes. We also describe the secretive enzyme activities, the transcription levels, and cloning of target genes. In conjunction with this, activities of degradative enzymes, including laccase, lignin peroxidase, and Mn peroxidase, were measured in the liquid medium in the presence of PAHs and dyes. Our results showed that the laccase activity was directed correlated with the degradation, indicating that the main enzyme acts on PAHs and dyes is the laccase. The laccase activity was further simulated by the addition of $Cu^{2+}$ ion. Detailed studies of the enzyme system should be sought for future applications.

  • PDF

N-terminal amino acid sequence analysis of major manganese peroxidase (MnP3) produced by static culture of Pleurotus ostreatus (느타리 버섯균의 정치배양으로부터 생산되는 중요한 망간퍼옥시데이즈(MnP3)의 N-말단 아미노산 배열 분석)

  • Ha, Hyo-Cheol
    • Journal of Mushroom
    • /
    • v.17 no.4
    • /
    • pp.185-190
    • /
    • 2019
  • Pleurotus ostreatus No.42, known as the ligninolytic basidiomycetes, showed production of MnP and Lac, but did not show any LiP acitivity in static culture, grown in GPYW liquid medium. Maximum production of MnP (80U/flask) was observed on day 11 of culturing in this medium. Chromatographic purification of MnP included the use of Sepharose CL-6B and Mono-Q. The major MnP isozyme purified by column chromatography was observed to be a 36.4 KDa (single band on SDS PAGE). The 19-amino acid sequence from the N-terminal was determined by protein sequencing to be ATCADGRTTANAACCVLFP. The N-terminal sequence of the major MnP isozyme of P. ostreatus No.42 was found to be the same as a previously reported sequence of an MnP3 isozyme from this fungus.

Peroxidase-mediated Formation of the Fungal Polyphenol 3,14'-Bihispidinyl

  • Lee, In-Kyoung;Yun, Bong-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.107-109
    • /
    • 2008
  • Medicinal fungi, Phellinus linteus and Inonotus xeranticus, produce a cluster of yellow pigment in their fermentation broth that acts as an important element of biological activity. The pigment is composed of diverse polyphenols with a styrylpyrone moiety, mainly hispidin and its dimers, 3,14'-bihispidinyl, hypholomine B, and 1,1-distyrylpyrylethan. Although dimeric hispidins were proposed to be biosynthesized from two molecules of monomer via oxidative coupling by ligninolytic enzymes, laccase and peroxidase, the details of this process remain unknown. In this preliminary study, we attempted to achieve enzymatic synthesis of the hispidin dimer from hispidin by using commercially available horseradish peroxidase (HRP). Consequently, a hispidin dimer, 3,14'-bihispidinyl, was synthesized, whereas the other dimers, hypholomine B and 1,1-distyrylpyrylethan, were not produced. This result suggested that the oxidative coupling at the C-3 and C-14' positions of hispidins was dominant in the process of dimerization by HRP, and indicated that additional catalysts or substrates would be needed to synthesize other hispidin dimers present in the fungal metabolite.

Biodegradation of triphenyl methane dyes by white rot fungus, Trametes versicolor (Trametes versicolor 의한 triphenyl methane계 염료의 분해)

  • Baek, Seung-A;Choi, Jaehyuk;Lee, Tae-Soo;Im, Kyung-Hoan
    • Journal of Mushroom
    • /
    • v.13 no.1
    • /
    • pp.63-67
    • /
    • 2015
  • White rot fungi produce lignin-degrading enzymes such as laccase, manganese peroxidase and lignin peroxidase. These extracellular oxidases efficiently degrade recalcitrant synthetic dyestuffs with diverse chemical structures. Here, we examined the activities of lignin-degrading enzymes in Trametes versicolor using triphenyl methane dyes, crystal violet (CV) and malachite green (MG). Both dyes were decolorized by T. versicolor in solid and liquid culture conditions. T. versicolor decolorized MG more quickly than CV in both conditions. Among three ligninolytic enzymes, laccase was most abundantly found in the decolorization processes of CV and MG. However, higher activity of laccase was needed to degrade CV than MG. The much less activity of MnP was also detected. But the increase of MnP activity was well corresponded to the decolorization efficiency of CV, suggesting the involvement of MnP in CV degrading process. However, its role in the degradation process of MG is supposed to be subsidiary to laccase.