• Title/Summary/Keyword: Lightweight fine aggregate

Search Result 51, Processing Time 0.025 seconds

Coconut shell waste as an alternative lightweight aggregate in concrete- A review

  • Muhammad Fahad, Ejaz;Muhammad ,Aslam;Waqas, Aziz;M. Jahanzaib, Khalil;M. Jahanzaib, Ali;Muhammad, Raheel;Aayzaz, Ahmed
    • Advances in materials Research
    • /
    • v.11 no.4
    • /
    • pp.299-330
    • /
    • 2022
  • This review article highlights the physical, mechanical, and chemical properties of coconut shells, and the fresh and hardened properties of the coconut shell concrete are summarized and were compared with other types of aggregates. Furthermore, the structural behavior in terms of flexural, shear, and torsion was also highlighted, with other properties including shrinkage, elastic modulus, and permeability of the coconut shell concrete. Based on the reviewed literature, concrete containing coconut shell as coarse aggregate with normal sand as fine showed the 28-day compressive strength between 2 and 36 MPa with the dried density range of 1865 to 2300 kg/m3. Coconut shell concretes showed a 28-day modulus of rupture and splitting tensile strength values in the ranges of 2.59 to 8.45 MPa and 0.8 to 3.70 MPa, respectively, and these values were in the range of 5-20% of the compressive strength. The flexural behavior of CSC was found similar to other types of lightweight concrete. There were no horizontal cracks on beams which indicate no bond failure. Whereas, the diagonal shear failure was prominent in beams with no shear reinforcements while flexural failure mode was seen in beams having shear reinforcement. Under torsion, CSC beams behave like conventional concrete. Finally, future recommendations are also suggested in this study to investigate the innovative lightweight aggregate concrete based on the environmental and financial design factors.

A Study on Trend for Recycling Technology of Waste Wood and Its Utilization as Lightweight Fine Aggregate (폐목재의 활용을 위한 기술동향 분석 및 경량잔골재로서의 활용방안에 관한 연구)

  • Choi, Jae-Jin;Moon, Seung-Kwon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.84-90
    • /
    • 2012
  • Patents in Korea, Japan and the U.S. were searched at the Korea Intellectual Property Rights Information Service (KIPRIS) of Korea Institute of Patent Information using related keywords in order to analyze the trend of patents on the usage of waste wood. Materials on a total of 77 patents in Korea, 317 patents in Japan, and 316 patents in the U.S. that had been registered as patents as of Dec. 31, 2011 were collected. Among the collected materials, the patents rejected, expired, annulled, withdrawn and waived as well as those which had little relationship with waste wood were excluded and the 71 patents in Korea, 227 patents in Japan and 216 patents in the U.S. were finally selected for analysis. In addition, the properties of the mortar which used waste wood as an alternative for a part of the fine aggregate were tested as a basic study for the usage of waste wood as a lightweight aggregate for concrete. For the test, the waste wood of the pine tree was crushed, sifted through No. 8(2.4 mm) sieve, and then dried for 24 hours at $100{\pm}5^{\circ}C$. As it is known that some kinds of tree prevent the hardening of cement when the wood is mixed with cement, the crushed waste wood in this study was dipped in the water of $20^{\circ}C$, $50^{\circ}C$, $80^{\circ}C$ and $100^{\circ}C$ and then dried up before testing the properties of the mortar to examine the effect of the preliminary treatment of crushed waste wood.

  • PDF

A Flexural Strength Properties of Extruding Concrete Panel Using Stone Powder Sludge (석분슬러지를 이용한 압출성형 콘크리트 패널의 휨강도 특성)

  • Choi Hun-Gug;Jung Eun-Hye;Kawg Eun-Gu;Kang Cheol;Seo Jung-Pil;Kim Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.115-118
    • /
    • 2006
  • Nowadays the using of concrete is generalized, and construction material is demanded to be lightweight according to increasing the height and capacity of buildings. Therefore, it needs to develop the products having the great quality and various performance. Extruding concrete panel made of cement, silica source, and fiber, and it is a good lightweight concrete material in durability and thermostable. The silica of important ingredient is natural material with hish SiO2 contents and difficult in supply because of conservation of environment. On the other hand, the stone powder sludge discharged about 20-30% at making process of crushed fine aggregate and it is wasted. The stone powder sludge is valuable instead of silica ole because the stone powder sludge includes water of about 20-60%, SiO2 of about 64% and it has fine particles. This experiment is on the properties of extruding concrete panel using the stone powder sludge use instead of silica. From this experiment, we find that it is possible to replace the silica as stone power sludge up to 50%,

  • PDF

Characterization of fine lightweight aggregates sintered at floating state using by vertical furnace (수직로에서 부유 소성된 경량 세골재의 특성)

  • Kang, Seung-Gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.6
    • /
    • pp.258-263
    • /
    • 2008
  • The fine aggregates of below 2 mm size was fabricated using by the vertical furnace in which the aggregates could be sintered at floating state and its physical properties were analyzed. The liquid formed at the surface of specimens sintered at $1200{\sim}l300^{\circ}C$ induced a gas in core to expand so the denser shell and porous core could be produced. The C series specimen fabricated by crushing an extruded body had an irregular shape and sharp edges but those became spheroidized by bloating due to gas expansion inside. The fine aggregates fabricated in this study was as light as floating in the water and had an apparent density of $0.68{\sim}1.08$. The absorption rate was proportioned to a porosity showing that the pores in core was not closed completely. The properties of fine aggregates fabricated in vertical furnace were similar with those of in an electric muffle furnace but the sticking-together phenomenon by surface fusion was not occurred in the vertical furnace. The aggregates fabricated in this study had a little lower impact resistance than that of natural aggregate but satisfied the unit volume weight standard specified in KS.

A Fundamental Study on Properties of Method of Packaged Dry Combined Materials for Concrete -based on using high absorption aggregate- (건조된 재료를 혼합 포장한 콘크리트의 특성에 관한 기초적 연구 -흡수율이 높은 골재 사용 중심으로 -)

  • Han, Da-Hee;Kim, Kwan-Ki;Jung, Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.1 s.23
    • /
    • pp.115-121
    • /
    • 2007
  • Ordinary concrete uses aggregate sufficiently soaked with water, and is weighed, mixed with other materials and placed in accord with performances required in the construction field. Recently special concrete with high fluidity and durability is required but it is difficult to use top-quality concrete due to lack of high-quality aggregate, delayed transportation because of traffic jam, etc. In addition, sometimes the use of a remicon is inevitable just for small-sized concrete constructions or it is difficult for a remicon to reach remote construction places such as mountainous areas. To solve these problems, this study attempted to pack concrete materials. In other words, it is to instantize concrete. This study dried aggregate, a material of concrete, and compared the change of absorption phase of the aggregate in water and in paste in order to examine the effect of the dryness of aggregate on its absorption rate and, based on the absorption rate, decided water addition ratio necessary for the reduction of unit quantity caused by the use of dry aggregate in designing concrete mixture, and analyzed the properties of unhardened concrete according to water addition ratio in manufacturing concrete using aggregate in the state of absolute dryness and in the state of surface dryness.

Manufacturing artificial lightweight aggregates using coal bottom ash and clay (석탄 바닥재와 점토를 이용한 인공경량골재 제조)

  • Kim, Kang-Duk;Kang, Seung-Gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.6
    • /
    • pp.277-282
    • /
    • 2007
  • The artificial lightweight aggregate (ALA) was manufactured using coal bottom ashes produced from a thermoelectric power plant with clay and, the sintering temperature and batch composition dependence upon physical properties of ALA were studied. The bottom ash (BA) had 13wt% coarse particle (>4.75mm) and showed very irregular shape so should be crushed to fine particles to be formed with clay by extrusion process. Also the bottom ash contained a many unburned carbon which generates the gas by oxidation and lighten a aggregate during a sintering process. Plastic index of green bodies decreased with increasing bottom ash content but the extrusion forming process was possible for the green body containing BA up to 40wt% whose plastic index and plastic limit were around 10 and 22 respectively. The ALA containing $30{\sim}40wt%$ BA sintered at $1100{\sim}1200^{\circ}C$ showed a volume specific density of $1.3{\sim}1.5$ and water absorption of $13{\sim}15%$ and could be appled for high-rise building and super-long bridge.

The photo-removal characteristic of VOCs by photocatalyst/scoria/loess concrete (광촉매가 첨가된 스코리아/황토/콘크리트의 VOCs 제거특성)

  • Ko, Seong-Hyun;Lee, Jae-Hoon;Hong, Chong-Hyun;Ryu, Seong-Phil;Kim, Moon-Hoon;Moon, Kyung-Jong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.585-588
    • /
    • 2006
  • The environment-friendly building material, photocatalyst/scoria/loess concrete, was prepared using scoria and loess (which have merits as building materials) and photocatalyst (which has the functions to compose the environmental contaminants and of self cleaning). In order to apply this material as a building material, the compressive and flexible strengths, and water absorptivity (which have been set by Korea Industrial Standard) were measured. The optimum mixing ratio of photocatalyst/scoria/loess concrete was obtained at the condition of $393kg/m^3$ of coarse aggregate, $802kg/m^3$ of fine aggregate in case of scoria, $80kg/m^3$ of loess, $12kg/m^3$ of photocatalyst, $400kg/m^3$ of cement, and $2kg/m^3$ of AE water reducing agent. The photocatalyst/scoria/loess concrete prepared by above mixing ratio of raw materials showed 25 MPa of compressive strength, $3.8{\sim}4.6$ MPa of flexible strength and $11.4{\sim}12.0%$ of water absorptivity, indicating that the quality of this material was suitable for Korea Industrial Standard (more than 21 MPa for compressive strength, more than 2.0 MPa for flexible strength in case of lightweight aggregate, and less than 15 % for water absorptivity in case of clay brick) for using as a building material.

  • PDF

Physical and Mechanical Properties of Synthetic Lightweight Aggregate Concrete (인공경량골재(人工輕量骨材) 콘크리트 물리(物理)·역학적(力學的) 특성(特性))

  • Kim, Seong Wan;Min, Jeong Ki;Sung, Chan Yong
    • Korean Journal of Agricultural Science
    • /
    • v.24 no.2
    • /
    • pp.182-193
    • /
    • 1997
  • The normal cement concrete is widely used material to build the construction recently, but it has a fault to increase the dead load on account of its unit weight is large compared with strength. Therefore, many engineers are continuously searching for new materials of construction to provide greater performance at lower density. The main purpose of the work described in this paper were to establish the physical and mechanical properties of synthetic lightweight aggregate concrete using perlite on fine aggregate and expanded clay, pumice stone on coarse aggregate. The test results of this study are summarized that the water-cement ratio was shown 47% using expanded clay, 56% using pumice stone on coarse aggregate, unit weight was shown $l,622kgf/m^3$ using expanded clay, $l,596kgf/m^3$ using pumice stone on coarse aggregate, and the absorption ratio was shown same as 17%. The compressive strength was shown more than $228kgf/cm^2$, tensile and bending strength was more than $27kgf/cm^2$, $58kgf/cm^2$ at all types, and rebound number with schmidt hammer was increased with increase of compressive strength. The static modulus was $1.12{\times}10^5kgf/cm^2$ using expanded clay, $1.09{\times}10^5kgf/cm^2$ using pumice stone on coarse aggregate, and stress-strain curves were shown that increased with increase of stress, and the strain on the maximum stress was shown identical with $2.0{\times}10^{-3}$, approximately.

  • PDF

The Density and Strength Properties of Lightweight Foamed Concrete Using Stone-Powder Sludge in Hydrothermal Reaction Condition (수열반응 조건에서 석분 슬러지를 사용한 경량 기포 콘크리트의 밀도와 강도 특성)

  • Kim, Jin-Man;Jeong, Ji-Yong;Choi, Se-Jin;Kim, Bong-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.687-693
    • /
    • 2006
  • The Stone Powder Sludge(below SPS) is the by-product from the process that translates stone power of 8mm under as crushed fine aggregate. It is the sludge as like cake that has average particle size of $7{\mu}m$, absorbing water content of 20 to 60%, and $SiO_2$ content of 60% over. Because of high water content of SPS, it is not only difficult to handle, transport, and recycle, but also makes worse the economical efficiency due to high energy consuming to drying. This study is aim to recycle SPS as it is without drying. Target product is the lightweight foamed concrete that is made from the slurry mixed with pulverized mineral compounds and foams through hydro-thermal reaction of CaO and $SiO_2$. Although in the commercial lightweight foamed concrete CaO source is the cement and $SiO_2$ source is high purity silica powder with $SiO_2$ of 90%, we tried to use the SPS as $SiO_2$ source. From the experiments with factors such as foam addition rate and replacement proportion of SPS, we find that the lightweight foamed concrete with SPS shows the same trends as the density and strength of lightweight foamed concrete increases according to decrease of foam addition rate. But in the same condition, the lightweight foamed concrete with SPS is superior strength and density to that with high purity silica. This trends is distinguished according to increase of replacement proportion of SPS, also the analysis of XRF shows that the hydro thermal reaction translates SPS to tobermorite. Although SPS has low $SiO_2$ contents, the lightweight foamed concrete with SPS has superior strength and density, because it reacts well with CaO due to extremely fine particles. We conclude that it is possible to replace the high purity silica as SPS in the lightweight foamed concrete experimentally.

Physical and Mechanical Properties of Expanded Polystyrene Bead Concrete (팽창 폴리스틸렌 비드 콘크리트의 물리.역학적 특성)

  • 민정기;김성완;성찬용
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.6
    • /
    • pp.83-95
    • /
    • 1996
  • The normal cement concrete is widely used material to build the construction recently, but it has a fault to increase the dead load on account of its unit weight is large compared with strength. So, main purpose of this study was to establish the physical and mechanical properties of lightweight concrete using expanded polystyrene bead on fine aggregate and natural gravel, expanded clay and pumice stone on coarse aggregate. The test rusults of this study are summarized as follows; 1. The water-cement ratio of concrete using pumice stone was larger than that of the concrete using natural gravel and expanded clay. 2. The unit weights of concrete using pumice stone and expanded caly were shown less than 1,000g/$m^3$. 3. The compressive strengths of all types were shown less than 60kg/$cm^2$, tensile and bending strengths were shown less than l3kg/$cm^2$ and 3lkg/$cm^2$$^2$, respectively. 4. The pulse velocity of concrete was shown similar with using natural gravel and pumice stone, and shown the lowest using pumice stone. 5. The dynamic modulus of elasticity of concrete was shown considerably smaller, and shown the lowest using pumice stone. 6. The static modulus of elasticity of concrete using expanded clay and pumice stone were shown considerably smaller, and shown 22% ~29% as compared with the dynamic modulus of elasticity. 7. The stress-strain curves of concrete were shown similar, generally. And the curves were repeated at short intervals increase and decreased irregularly.

  • PDF