• Title/Summary/Keyword: Lightweight encryption algorithm

Search Result 69, Processing Time 0.026 seconds

A new type of lightweight stream encryption algorithm motif for applying low capacity messaging data encryption for IoT / QR / electronic tags (IoT/QR/전자태그용 저용량 메시지 데이터 암호화 적용을 위한 새로운 방식의 스트림 경량 암호화 알고리즘 모티브 제안)

  • Kim, Jung-Hoon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.1
    • /
    • pp.46-56
    • /
    • 2017
  • Recently, the spread of IoT technology has been spreading, and it has been applied to all industrial fields such as home / home appliance / medical care. Due to the low specification, low power consumption characteristic and communication data characteristic of IoT, implementation of existing algorithm is difficult thing. From this reason, we have proposed for the first time that encryption and decryption can be proceeded by introducing a kind of variable length bit XOR operation method which changes a variable the bit length value by using carry up and carry down method. We confirmed the practicality of encrypting short message data frequently processed by IoT device / QR code / RFID / NFC without changing the size of data before and after encryption.

Side channel Attacks on LEA and Its Countermeasures (LEA에 대한 부채널 분석 및 대응 방법)

  • Park, Jin-Hak;Kim, Tae-Jong;An, Hyun-Jin;Won, Yoo-Seung;Han, Dong-Guk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.2
    • /
    • pp.449-456
    • /
    • 2015
  • Recently, information security of IoT(Internet of Things) have been increasing to interest and many research groups have been studying for cryptographic algorithms, which are suitable for IoT environment. LEA(Lightweight Encryption Algorithm) developed by NSRI(National Security Research Institute) is commensurate with IoT. In this paper, we propose two first-order Correlation Power Analysis(CPA) attacks for LEA and experimentally demonstrate our attacks. Additionally, we suggest the mask countermeasure for LEA defeating our attacks. In order to estimate efficiency for the masked LEA, its operation cost is compared to operation time of masked AES.

Security Communication Implementation and Experiments for USN Fire Prevention System (USN 화재방재 시스템을 위한 보안 통신 구현 및 실험)

  • Kim, Young-Hyuk;Lim, Il-Kwon;Lee, Jae-Kwang
    • The Journal of Korean Association of Computer Education
    • /
    • v.13 no.6
    • /
    • pp.99-104
    • /
    • 2010
  • USN Fire Prevention System is an intelligent system that detects the fire through the value which has got from a sensor such as temperature, humidity, intensity of illumination, acceleration, carbon dioxide(CO2) and so on. And then send it to the operator also use the algorithmic fire detection to operate fire extinguish system on. It is among U-Disaster Prevention System which has prevented fire lately. Configuration of the packet was designed to make the most of lightweight and fast processing for low power consumption. Recently listed in the encryption algorithm is applied each DES, 3DES, AES and HIGHT. So objective was to faster encryption than encryption of high-performance finally domestic standard encryption algorithm HIGHT were suitable for the fire prevention system needed frequent sensing time.

  • PDF

An Efficient Implementation of Lightweight Block Cipher Algorithm HIGHT for IoT Security (사물인터넷 보안용 경량 블록암호 알고리듬 HIGHT의 효율적인 하드웨어 구현)

  • Bae, Gi-Chur;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.285-287
    • /
    • 2014
  • This paper describes a design of area-efficient/low-power cryptographic processor for lightweight block cipher algorithm HIGHT which was approved as a cryptographic standard by KATS and ISO/IEC. The HIGHT algorithm which is suitable for the security of IoT(Internet of Things), encrypts a 64-bit plain text with a 128-bit cipher key to make a 64-bit cipher text, and vice versa. For area-efficient and low-power implementation, we adopt 32-bit data path and optimize round transform block and key scheduler to share hardware resources for encryption and decryption.

  • PDF

Correlation Power Analysis Attack on Lightweight Block Cipher LEA and Countermeasures by Masking (경량 블록암호 LEA에 대한 상관관계 전력분석 공격 및 마스킹 대응 기법)

  • An, Hyo-Sik;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.7
    • /
    • pp.1276-1284
    • /
    • 2017
  • Lightweight Encryption Algorithm (LEA) that was standardized as a lightweight block cipher was implemented with 8-bit data path, and the vulnerability of LEA encryption processor to correlation power analysis (CPA) attack was analyzed. The CPA used in this paper detects correct round keys by analyzing correlation coefficient between the Hamming distance of the computed data by applying hypothesized keys and the power dissipated in LEA crypto-processor. As a result of CPA attack, correct round keys were detected, which have maximum correlation coefficients of 0.6937, 0.5507, and this experimental result shows that block cipher LEA is vulnerable to power analysis attacks. A masking method based on TRNG was proposed as a countermeasure to CPA attack. By applying masking method that adds random values obtained from TRNG to the intermediate data of encryption, incorrect round keys having maximum correlation coefficients of 0.1293, 0.1190 were analyzed. It means that the proposed masking method is an effective countermeasure to CPA attack.

A Hardware Implementation of SIMECK-64/128 Block Cipher Algorithm (SIMECK-64/128 블록암호 알고리듬의 하드웨어 구현)

  • Kim, Min-Ju;Jeong, Young-su;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.229-231
    • /
    • 2021
  • In this paper, we describe a hardware design of the SIMECK block cipher algorithm that can be implemented in lightweight hardware with appropriate security strength. To achieve fast encryption and decryption operations, it was designed using two-step method that reduces the number of operation rounds. The designed SIMECK cryptographic core was implemented in Arty S7-50 FPGA device and its hardware operation was verified with a GUI using Python.

  • PDF

A Hardware Implementation of Ultra-Lightweight Block Cipher PRESENT-80/128 (초경량 블록암호 PRESENT-80/128의 하드웨어 구현)

  • Cho, Wook-Lae;Kim, Ki-Bbeum;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.430-432
    • /
    • 2015
  • This paper describes a hardware implementation of ultra-lightweight block cipher algorithm PRESENT-80/128 that supports for two master key lengths of 80-bit and 128-bit. The PRESENT algorithm that is based on SPN (substitution and permutation network) consists of 31 round transformations. A round processing block of 64-bit data-path is used to process 31 rounds iteratively, and circuits for encryption and decryption are designed to share hardware resources. The PRESENT-80/128 crypto-processor designed in Verilog-HDL was verified using Virtex5 XC5VSX-95T FPGA and test system. The estimated throughput is about 550 Mbps with 275 MHz clock frequency.

  • PDF

Secure Multicast using Proxy Re-Encryption in an IoT Environment

  • Kim, SuHyun;Hwang, YongWoon;Seo, JungTaek
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.946-959
    • /
    • 2018
  • Recently interest in Internet of Things(IoT) has attracted significant attention at national level. IoT can create new services as a technology to exchange data through connections among a huge number of objects around the user. Data communication between objects provides not only information collected in the surrounding environment but also various personalized information. IoT services which provide these various types of data are exposed to numerous security vulnerabilities. If data is maliciously collected and used by an attacker in an IoT environment that deals with various data, security threats are greater than those in existing network environments. Therefore, security of all data exchanged in the IoT environment is essential. However, lightweight terminal devices used in the IoT environment are not suitable for applying the existing encryption algorithm. In addition, IoT networks consisting of many sensors require group communication. Therefore, this paper proposes a secure multicast scheme using the proxy re-encryption method based on Vehicular ad-hoc networks(VANET) environment. The proposed method is suitable for a large-scale dynamic IoT network environment using unreliable servers.

A White Box Implementation of Lightweight Block Cipher PIPO (경량 블록 암호 PIPO의 화이트박스 구현 기법)

  • Ham, Eunji;Lee, Youngdo;Yoon, Kisoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.5
    • /
    • pp.751-763
    • /
    • 2022
  • With the recent increase in spending growth in the IoT sector worldwide, the importance of lightweight block ciphers to encrypt them is also increasing. The lightweight block cipher PIPO algorithm proposed in ICISC 2020 is an SPN-structured cipher using an unbalanced bridge structure. The white box attack model refers to a state in which an attacker may know the intermediate value of the encryption operation. As a technique to cope with this, Chow et al. proposed a white box implementation technique and applied it to DES and AES in 2002. In this paper, we propose a white box PIPO applying a white box implementation to a lightweight block cipher PIPO algorithm. In the white box PIPO, the size of the table decreased by about 5.8 times and the calculation time decreased by about 17 times compared to the white box AES proposed by Chow and others. In addition, white box PIPO was used for mobile security products, and experimental results for each test case according to the scope of application are presented.

A 7.8Gbps pipelined LEA crypto-processor (7.8Gbps 파이프라인 LEA 크립토 프로세서)

  • Sung, Mi-ji;Shin, Kyung-wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.157-159
    • /
    • 2016
  • 3가지 마스터키 길이 128/192/256 비트를 지원하는 파이프라인 LEA(Lightweight Encryption Algorithm) 크립토 프로세서를 설계하였다. 높은 처리율을 얻기 위해 16개의 라운드 스테이지가 파이프라인 방식으로 동작하며, 각 라운드 스테이지는 128비트 데이터패스를 갖도록 설계하였다. 설계된 LEA 프로세서는 FPGA 구현을 통해 하드웨어 동작을 검증하였다. Xilinx ISE로 합성한 결과, 최대 동작주파수 122MHz로 동작하여 7.8Gbps의 성능을 갖는 것으로 평가되었다.

  • PDF