• Title/Summary/Keyword: Lightweight concrete

Search Result 620, Processing Time 0.027 seconds

Investigation of adding cement kiln dust (CKD) in ordinary and lightweight concrete

  • Shoaei, Parham;Zolfaghary, Sina;Jafari, Navid;Dehestani, Mehdi;Hejazi, Manouchehr
    • Advances in concrete construction
    • /
    • v.5 no.2
    • /
    • pp.101-115
    • /
    • 2017
  • Cement kiln dust (CKD) is one of the most important waste materials in the cement industry. The large amount of this material, has encouraged researchers to propose new ways to recycle and reuse it. In this paper, effects of adding cement kiln dust to the ordinary Portland cement, on the physical and mechanical properties of ordinary and lightweight concrete were investigated. Results showed that concrete containing CKD, presents lower workability and modulus of elasticity; however, improvements in strength was observed by adding particular amounts of CKD. Eventually, it was found that adding 10% of cement weight CKD is the appropriate percentage for utilizing in manufacturing ordinary and lightweight concrete.

The Fundamental Study on Thermal Conductivity with Variation Density of Light Weight Foam Concrete and Iron plate structure (경량기포콘크리트의 밀도변화에 따른 열전도 특성에 관한 기초적 연구)

  • Choi, Hun-Gug;Jung, Eun-Hye;Kang, Cheol;Lee, Eun-Young;Kim, Dae-Yeon;Kim, Jin-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.849-852
    • /
    • 2006
  • The lightweight foamed concrete is superior to properties of insulation and light-weight because it is included in many inner pore. So, lightweight foamed concrete used to construction field that need to property of insulation. The property of insulation of lightweight foamed concrete is varied with density. Also, Density is varied with hardening matrix and pore rate. The purpose of the experiment is to know thermal properties of specimen according to the change of density when heating the specimen. As a result of this experiment, the higher density, the lower temperature of mold. this tendency isn't same as ordinary lightweight foamed concrete, and then density 0.9 is expressed most low temperature result also the discontinuity of shape of mold was efficient for the prevention of the temperature rise.

  • PDF

A Study of the Basic Properties of Lightweight Aggregate Concrete for Offshore Structures Application (해양구조물 적용을 위한 경량골재콘크리트의 기초물성에 관한 연구)

  • Kim, Myung-Sik;Jang, Hee-Suk;Kim, Chung-Ho;Baek, Dong-Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.73-79
    • /
    • 2011
  • The various properties of concrete have been required, as civil engineering structures are getting larger and complicated. Therefore, the high performance of concrete, such as high strength, high fluidity, and low hydration heat, has been investigated largely. In this study, the properties of lightweight concrete-reducing self-weight of structure member have been studied in order to check the applicability of lightweight aggregate concrete to structural material. The experiments on compressive strength, splitting tensile strength, unit weight, and modulus of elasticity have been conducted with varying PLC, LWCI, LWCII, LWCII-SF5, LWCII-SF15 to check the basic properties. The compressive strength of 21MPa was obtained easily by using lightweight aggregate concrete and the addition of silica fume to increase the compressive strength slightly. To use lightweight aggregate concrete for civil engineering structures, systematic and rigorous studies are necessary.

Properties of recycled green building materials applied in lightweight aggregate concrete

  • Wang, Her-Yung;Hsiao, Darn-Horng;Wang, Shi-Yang
    • Computers and Concrete
    • /
    • v.10 no.2
    • /
    • pp.95-104
    • /
    • 2012
  • This study uses recycled green building materials based on a Taiwan-made recycled mineral admixture (including fly ash, slag, glass sand and rubber powder) as replacements for fine aggregates in concrete and tests the properties of the resulting mixtures. Fine aggregate contents of 5% and 10% were replaced by waste LCD glass sand and waste tire rubber powder, respectively. According to ACI concrete-mixture design, the above materials were mixed into lightweight aggregate concrete at a constant water-to-binder ratio (W/B = 0.4). Hardening (mechanical), non-destructive and durability tests were then performed at curing ages of 7, 28, 56 and 91 days and the engineering properties were studied. The results of these experiments showed that, although they vary with the type of recycling green building material added, the slumps of these admixtures meet design requirements. Lightweight aggregate yields better hardened properties than normal-weight concrete, indicating that green building materials can be successfully applied in lightweight aggregate concrete, enabling an increase in the use of green building materials, the improved utilization of waste resources, and environmental protection. In addition to representing an important part of a "sustainable cycle of development", green building materials represent a beneficial reutilization of waste resources.

An experimental Study on the Fundamental Properties of Lightweight Aggregate Concrete (경량골재 콘크리트의 기초물성에 관한 실험적 연구)

  • Baek, Dong-Il;Han, Hyun-Sun;Kim, Myung-Sik;Jang, Hee-Suk;Kim, Chung-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.335-336
    • /
    • 2009
  • In this study, the properties of lightweight concrete which is beneficial to cost and technique by reducing self weight of structure member was carried out basic research. The unit weight, compressive strength, splitting tensile strength test have been conducted with producting plain concrete, lightweight aggregate concrete type I and type II to check the basic properties. The compressive strength of 21MPa was obtained easily by using lightweight aggregate concrete and addition of silica fume increase the compressive strength slightly. To use lightweight aggregate concrete for civil engineering structure, systematic and rigorous studies are necessary.

  • PDF

Fuzzy logic approach for estimating bond behavior of lightweight concrete

  • Arslan, Mehmet E.;Durmus, Ahmet
    • Computers and Concrete
    • /
    • v.14 no.3
    • /
    • pp.233-245
    • /
    • 2014
  • In this paper, a rule based Mamdani type fuzzy logic model for prediction of slippage at maximum tensile strength and slippage at rupture of structural lightweight concretes were discussed. In the model steel rebar diameters and development lengths were used as inputs. The FL model and experimental results, the coefficient of determination R2, the Root Mean Square Error were used as evaluation criteria for comparison. It was concluded that FL was practical method for predicting slippage at maximum tensile strength and slippage at rupture of structural lightweight concretes.

Characteristics of Lightweight Concrete and Their Application in Structures

  • ;R.N. Swamy
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.E
    • /
    • pp.60-69
    • /
    • 1992
  • The research significance of the paper is to identify the major properties of synthetic lightweight concrete that are affected by ASR expansion and to determine the extent and magnitude of the loss in these properties. Emphasis is also given to the use of non-destructive testing techniques ; Such as dynamic modulus of elasticity and ultrasonic pulse velocity, to examine whether these methods could be used to identify the initiation of expansion and the internal structural damage caused by ASR.

  • PDF

The Unit Weight and Compressive Strength Properties of Lightweight Concrete by the Mixing Ratio of Artificial Lightweight Coarse Aggregate (인공경량굵은골재 혼합비율에 따른 경량콘크리트의 기건단위질량 및 압축강도 특성)

  • Kim, Do-Bin;Kim, Young-Uk;Oh, Tae-Gue;Kim, Joung-Hyeon;Ban, Jun-Mo;Choi, Se-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.218-219
    • /
    • 2018
  • This study analyzed the unit weight and compressive strength properties of lightweight concrete using high volume blast furnace slag powder by the mixing ratio of lightweight coarse aggregate to investigate the properties of lightweight concrete using domestic artificial lightweight aggregate.

  • PDF

A Fundamental Study for the Behavior of Lightweight Aggregate Concrete Slab Reinforced with GFRP Bar (GFRP bar를 휨보강근으로 사용한 경량골재콘크리트 슬래브의 거동에 관한 기초적 연구)

  • Jeon, Sang Hun;Shon, Byung Lak;Kim, Chung Ho;Jang, Heui Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.3
    • /
    • pp.99-108
    • /
    • 2012
  • In this paper, to intend anticorrosive effect and weight reduction of conventional reinforced concrete slab, lightweight concrete slab reinforced with glass fiber reinforced polymer(GFRP) bar was considered and some basic behaviour of the slab were investigated. Measurement of splitting tensile strength and fracture energy of the concrete, a number of flexural experiment of the slab, numerical analysis using nonlinear finite element analysis, and comparison of the experimental results to the numerical analysis, were conducted. As a result, even the weight of the lightweight concrete slab could be reduced by about 28% than the normal concrete slab, failure load of the lightweight concrete slab was 36% smaller than the normal concrete slab. Such a thing can be attributed to the lower axial stiffness and lower bond strength of GFRP bar. In the numerical analysis, to consider decreasing property of bond strength of the lightweight concrete, interface element was used between the concrete and the GFRP bar elements and this method was shown to be a better way for the numerical analysis to approach the experimental results.

Effect of Partial Prestressing Ratio and Effective Prestress on the Flexural Behavior of Prestressed Lightweight Concrete Beams (프리스트레스트 경량 콘크리트 보의 휨 거동에 대한 부분 프리스트레싱비와 유효 프리스트레스의 영향)

  • Yang, Keun-Hyeok;Moon, Ju-Hyun;Byun, Hang-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.1
    • /
    • pp.39-48
    • /
    • 2011
  • The present investigation evaluates the flexural behavior of pre-tensioned lightweight concrete beams under two-point symmetrical concentrated loads according to the variation of the partial prestressing ratio and the effective prestress of prestressing strands. The designed compressive strength of the lightweight concrete with a dry density of 1,770 $kg/m^3$ was 35 MPa. The deformed bar with a yield strength of 383 MPa and three-wire mono-strands with tensile strength of 2,040 MPa were used for longitudinal tensile reinforcement and prestressing steel reinforcement, respectively. According to the test results, the flexural capacity of pre-tensioned lightweight concrete beams increased with the increase of the partial prestressing ratio and was marginally influenced by the effective prestress of strands. With the same reinforcing index, the normalized flexural capacity of pre-tensioned lightweight concrete beams was similar to that of pre-tensioned normal-weight concrete beams tested by Harajli and Naaman and Bennett. On the other hand, the displacement ductility ratio of pre-tensioned lightweight concrete beams increased with the decrease of the partial prestressing ratio and with the increase of the effective prestress of strands. The load-displacement relationship of pre-tensioned lightweight concrete beam specimens can be suitably predicted by the developed non-linear two-dimensional analysis procedure. In addition, the flexural cracking moment and flexural capacity of pre-tensioned lightweight concrete beams can be conservatively evaluated using the elasticity theorem and the approach specified in ACI 318-08, respectively.