• Title/Summary/Keyword: Lightning Surge

Search Result 291, Processing Time 0.025 seconds

Transient State Analysis of Faults Caused by Lightning Surge in Distribution Line (뇌서지에 의한 배전선로 고장 시 과도상태 분석)

  • Lim, Sung-Yong;Kim, Kyu-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.51-57
    • /
    • 2016
  • This paper presents the voltage characteristics of the various faults after lightning surge hits the overhead grounding wire close to the transformer's secondary side. Based on the modeled distribution system, the cases of the various faults occurred by lightning surge are simulated using EMTP/ATPDraw and maximum overvoltage and RMS voltage according to the distances from the transformer are investigated. As a result, it is seen that the voltage characteristics of faults caused by lightning surge is different depending on the fault type and the voltage characteristics can be used to detect the fault type caused by lightning surge.

Analysis of lightning surge on the 345kV Gas Insulated Substation (345kV GIS 변전소 뇌써지 해석)

  • Kim, Jae-Kwan;Lee, Jong-Beom;Cho, Han-Goo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.561-563
    • /
    • 2003
  • This paper deals with simulation of lightning overvoltage generated by back flashover entering 345[kV] Gas Insulated Substation. In order to protect the substation equipment against lightning surge, insulation coordination is performed with the lightning arrester. This paper suggests optimal location of lightning arrester using the EMTP/ATPDraw to mere economically and effectively reduce the lightning surge incoming overhead lines.

  • PDF

The Lightning Current Parameters that Impact on the Surge Analysis of the EHV Gas Insulated Substation by EMTP

  • Shim Eung-Bo;Han Sang-Ok
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.1
    • /
    • pp.1-7
    • /
    • 2005
  • This paper describes the lightning surge analysis model of extra high voltage GIS using EMTP. Various lightning current parameters were investigated in order to confirm the impact on the lightning surge analysis such as lightning current amplitude, waveform, size of GIS, tower footing resistance and surge arresters. The multi-story tower model and EMTP/TACS model were introduced for the simulation of dynamic arc characteristics. The margin between the maximum overvoltage and BIL of the GIS was about 10 percent and the margin between the maximum overvoltage and BIL of the transformer was 21 percent.

Effective Installations Technique of Grounding Conductors for Metal Oxide Surge Arrestors (배전피뢰기용 접지도선의 효과적인 설치기법)

  • Lee, Bok-Hui;Gang, Seong-Man;Yu, In-Seon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.6
    • /
    • pp.253-259
    • /
    • 2002
  • This paper deals with the effects of grounding conductors for metal oxide surge arresters. When surge arresters are improperly installed, the results can cause costly damage of electrical equipments. In particular, the route of surge arrester connection is very important because bends and links of leads increase the impedances to lightning surges and tend to nullify the effectiveness of a grounding conductor. Therefore, there is a need to know how effective installation of lightning surge arresters is made in order to control voltage and to absorb energy at high lightning currents. The effectiveness of a grounding conductor and 18 [㎸] metal oxide distribution line arresters was experimentally investigated under the lightning and oscillatory impulse voltages. Thus, the results are as follows; (1) The induced voltage of a grounding conductor is drastically not affected by length of a connecting line, but it is very sensitive to types of grounding conductor. (2) The coaxial cable having a low characteristic impedance is suitable as a grounding conductor. (3) It is also clear from these results that bonding the metal raceway enclosing the grounding conductor to the grounding electrode is very effective because of skin effect. (4) The induced voltages of grounding conductors for the oscillatory impulse voltages are approximately twice as large as those for the lightning impulse voltages.

Propagation Aspect of Lightning Surge According to The Arrangement of Indoor wire (옥내배선 배치에 따른 서지 전파양상)

  • Lee, Suck-Woo;Whang, Kyu-Hyun;Seo, Ho-Joon;Rhie, Dong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.658-661
    • /
    • 2004
  • Lightning surge damages of low voltage equipments in building are increasing due to increase in electrical and communication networks in the information-oriented society And electrical circuits with semiconductor are very weak against lightning surge. To achieve effective method of surge protection on low voltage lines, there are needs for the relationship between propagation aspects of lightning surge and arrangement of indoor wire. This paper describes the experimental study on the relationship between them. This result may be raw data for establishment of surge protection system.

  • PDF

Experimental Study of Overvoltage Phenomena due to Lightning Surge (뇌서지에 의한 과전압 현상에 대한 실험연구)

  • Lee, Suck-Woo;Ko, Yeon-Sung;Yeo, Dong-Goo;Seo, Ho-Joon;Rhie, Dong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2005.11c
    • /
    • pp.80-82
    • /
    • 2005
  • Lightning surge damages of low voltage equipments in building are increasing due to increase in electrical and communication networks in the information-oriented society. And electrical circuits with semiconductor are very weak against lightning surge. To achieve effective method of surge protection on low voltage lines, there are needs for the relationship between propagation aspects of lightning surge and arrangement of indoor wire. This paper describes the experimental study on the relationship between them. This result may be raw data for establishment of surge protection system.

  • PDF

Analysis of Surge Current Path of Flyback Converter by Lightning Surge (뇌서지에 의한 플라이백 컨버터의 서지전류 경로 분석)

  • Park, Jun-Woo;Lee, Kang-Hee;Kim, Jin-Ho;Hong, Sung-Soo;Won, Jae-Sun;Kim, Jong-Hae
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.178-183
    • /
    • 2013
  • The study of lightning surge have been conducted on information and communications equipment and power system. However, the research on SMPS itself is an inactive field. This paper analyzes surge current path of flyback converter with the combination wave generator by lightning surge. Also, this paper discloses that there exists the surge current with high-frequency component besides the low-frequency component based on the standard surge current. This high-frequency surge current is the major reason to damage the semiconductor devices such as FET and IC. To confirm the validity of the proposed issue, the analysis and experimental results are presented.

Insulation Design of Distribution Systems in Case of the Stroke of Direct Lightning Surge (직격뢰 침입시 배전계통 절연설계)

  • 정채균;김상국;이종범;서재호
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.4
    • /
    • pp.238-247
    • /
    • 2004
  • This paper describes the insulation coordination scheme of line in distribution system when the direct lightning surge strikes. The BIL that is applied to distribution system is not properly considered the performance and operation of arresters. Because of that, the high BIL is being used at partial system. This paper variously analyses the lightning overvoltage of line and equipment with earth of overhead grounding wire and installation types of arrester. From these result. authors examine the rationality of BIL.

Review about the Lightning Protection System for Ground Facilities of Anti-aircraft Weapons System (뇌 보호시스템의 대공무기체계 지상시설 적용에 대한 고찰)

  • Jung, Kyoungwook;Shim, Donghyouk;Son, Donghyeop
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.339-347
    • /
    • 2021
  • Recently, the incidence of lightning in Korea has been increasing more and more. The damage caused by lightning is also getting worse. Lightning protection system is a prerequisite, not a sufficient condition. Considering the characteristics of lightning, there is a high frequency of lightning strikes in highlands. So, high grades of LPS should be applied to ground facilities of anti-aircraft weapons systems. 4-Level LPS was applied on groung facilities of anti-aircraft weapons system based on lightning incidence rate in past. There are some possibilities of damage from lightning in anti-aircraft weapons system. So, we have to readjust the LPS level with grounding, lightning rods and surge protect device based on lightning incidence rate in now days. Propose 2-level LPS and design with lightning rods, surge protector, separated grounding in this paper.

Electromagnetic Field Analysis on Surge Response of 500 kV EHV Single Circuit Transmission Tower in Lightning Protection System using Neural Networks

  • Jaipradidtham, Chamni
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1637-1640
    • /
    • 2005
  • This paper presents a technique for electromagnetic field analysis on surge response due to Mid-span back-flashovers effects in lightning protection system of 500 kV EHV single circuit transmission tower by the neural networks method. These analyses are based on modeling lightning return stroke as well as on coupling the electromagnetic fields of the stroke channel to the line. The ground conductivity influences both the electric field as well as the coupling mechanism and hence the magnitude and wave shape of the induced voltage. The technique can be used to analyzed the corona voltage effect, the effective of stroke to the span tower, the surge impedance of transmission lines. The maximum voltage from flashovers effects in the lines. The model is compatible with general electromagnetic transients programs such as the ATP-EMTP. The simulation results show that this study analyses for time-domain with those produced by a cascade multi-section model, the surge impedance of a full-sized tower hit directly by a lightning stroke is discussed.

  • PDF