• 제목/요약/키워드: Light-pipe system

검색결과 86건 처리시간 0.025초

표면에 계단이 부착된 회전하는 실린더 주위 난류유동의 전산해석 (Numerical Study of Turbulent Flow Around a Rotating Cylinder with Surface Roughness)

  • 양경수;황종연;김영완
    • 대한기계학회논문집B
    • /
    • 제24권8호
    • /
    • pp.1104-1111
    • /
    • 2000
  • Erosion-corrosion in a pipe system often occurs at fittings, valves, and weld beads where flow separation and reattachment yield high turbulence intensity. Thus identifying their correlations would be the first step towards resolving the erosion-corrosion problems associated with industrial applications. Bremhorst of the Univ. of Queensland, Australia, proposed that a rotating cylinder with surface roughness (two backward-facing steps periodically mounted on a circular cylinder) be an economical and tractable tool which can generate extreme flow conditions for erosion-corrosion study. In this work, DNS has been carried out for turbulent flows around the same rotating cylinder as his experimental apparatus. Our result shows that a region of intense turbulence intensity and high wall-shear stress fluctuation is formed along the cylinder surface in the recirculating region behind the step, where high mass-transfer capacity is also experimentally observed. Since corrosion is mass-transfer controlled, our finding sheds light on the direction of future corrosion research.

마그네슘 합금제 휠 제조에 관한 연구 (A Study of Manufacturing AZ91D Mg Alley Wheel)

  • 김정구;신일성;금동화
    • 한국재료학회지
    • /
    • 제9권7호
    • /
    • pp.715-723
    • /
    • 1999
  • 마그네슘은 20여년간 자동차 산업에서 휠소재로 사용되어 왔다. 마그네슘 휠은 무게가 알루미늄 휠보다 25% 가벼워서 주행성이 우수하다. 이 연구의 목적은 사형주조 및 영구금형주조 공정에 의한 AZ91D 합금제 췰을 개발하는 것이다 보호개스$(SF_6+CO_2)$를 사용하는 비플럭스 용해기술을 적용하여 용탕의 산화와 불순물의 유입을 배제하였다 마그네슘 용탕은 가압식 펌프시스템을 사용하여 가열된 파이프를 통하여 모울드에 자동으로 공급된다. 열처리 및 인고트의 조성에 따른 AZ91B 합금제 휠의 기계적 특성을 조사하였다.

  • PDF

일반배관용 스테인리스강관에 대한 프레스식 관이음쇠의 내진성능에 관한 연구 (A Study on the Seismic Protection Performance of Press Fittings for Light Gauge Stainless Steel Pipes)

  • 백열선;남준석
    • 한국화재소방학회논문지
    • /
    • 제31권4호
    • /
    • pp.65-70
    • /
    • 2017
  • 본 연구는 최근 수계소화설비 배관에 적용되고 있는 스테인리스 강관용 프레스식 관이음쇠에 대한 내진성능 연구를 수행한다. 연구를 위한 설비의 구성은 NFPA 13의 배관연결방법으로 하였다. 배관의 허용변위량은 건축구조기준에서 제시한 허용량으로 하였고, 반복회수는 10회로 하였다. 실험 후 배관의 Von-mises 응력은 허용응력의 2.48, 1.25배로 NPPs Allowable Stress for Level D service loading의 "허용응력의 3배"인 기준 보다는 적게 나타났다. 따라서 프레스식 관이음쇠는 내진성능을 갖추고 있는 것으로 판단 할 수 있다.

Preliminary numerical study on hydrogen distribution characteristics in the process that flow regime transits from jet to buoyancy plume in time and space

  • Wang, Di;Tong, Lili;Liu, Luguo;Cao, Xuewu;Zou, Zhiqiang;Wu, Lingjun;Jiang, Xiaowei
    • Nuclear Engineering and Technology
    • /
    • 제51권6호
    • /
    • pp.1514-1524
    • /
    • 2019
  • Hydrogen-steam gas mixture may be injected into containment with flow regime varying both spatially and transiently due to wall effect and pressure difference between primary loop and containment in severe accidents induced by loss of coolant accident. Preliminary CFD analysis is conducted to gain information about the helium flow regime transition process from jet to buoyancy plume for forthcoming experimental study. Physical models of impinging jet and wall condensation are validated using separated effect experimental data, firstly. Then helium transportation is analyzed with the effect of jet momentum, buoyancy and wall cooling discussed. Result shows that helium distribution is totally dominated by impinging jet in the beginning, high concentration appears near gas source and wall where jet momentum is strong. With the jet weakening, stable light gas layer without recirculating eddy is established by buoyancy. Transient reversed helium distribution appears due to natural convection resulted from wall cooling, which delays the stratification. It is necessary to concern about hydrogen accumulation in lower space under the containment external cooling strategy. From the perspective of experiment design, measurement point should be set at the height of connecting pipe and near the wall for stratification stability criterion and impinging jet modelling validation.

설비공학 분야의 최근 연구 동향: 2014년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2014)

  • 이대영;김사량;김현정;김동선;박준석;임병찬
    • 설비공학논문집
    • /
    • 제27권7호
    • /
    • pp.380-394
    • /
    • 2015
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2014. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of heat and mass transfer, cooling and heating, and air-conditioning, the flow inside building rooms, and smoke control on fire. Research issues dealing with duct and pipe were reduced, but flows inside building rooms, and smoke controls were newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for thermal contact resistance measurement of metal interface, a fan coil with an oval-type heat exchanger, fouling characteristics of plate heat exchangers, effect of rib pitch in a two wall divergent channel, semi-empirical analysis in vertical mesoscale tubes, an integrated drying machine, microscale surface wrinkles, brazed plate heat exchangers, numerical analysis in printed circuit heat exchanger. In the area of pool boiling and condensing, non-uniform air flow, PCM applied thermal storage wall system, a new wavy cylindrical shape capsule, and HFC32/HFC152a mixtures on enhanced tubes, were actively studied. In the area of industrial heat exchangers, researches on solar water storage tank, effective design on the inserting part of refrigerator door gasket, impact of different boundary conditions in generating g-function, various construction of SCW type ground heat exchanger and a heat pump for closed cooling water heat recovery were performed. (3) In the field of refrigeration, various studies were carried out in the categories of refrigeration cycle, alternative refrigeration and modelling and controls including energy recoveries from industrial boilers and vehicles, improvement of dehumidification systems, novel defrost systems, fault diagnosis and optimum controls for heat pump systems. It is particularly notable that a substantial number of studies were dedicated for the development of air-conditioning and power recovery systems for electric vehicles in this year. (4) In building mechanical system research fields, seventeen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the evaluation of work noise in tunnel construction and the simulation and development of a light-shelf system. The subjects of building energy were worked on the energy saving of office building applied with window blind and phase change material(PCM), a method of existing building energy simulation using energy audit data, the estimation of thermal consumption unit of apartment building and its case studies, dynamic window performance, a writing method of energy consumption report and energy estimation of apartment building using district heating system. The remained studies were related to the improvement of architectural engineering education system for plant engineering industry, estimating cooling and heating degree days for variable base temperature, a prediction method of underground temperature, the comfort control algorithm of car air conditioner, the smoke control performance evaluation of high-rise building, evaluation of thermal energy systems of bio safety laboratory and a development of measuring device of solar heat gain coefficient of fenestration system.

온풍난방기의 배기열을 이용한 지중 난방용 온수공급시스템의 열회수특성 (Heat Recovery Characteristics of the Hot Water Supply System with Exhaust Heat Recovery Unit Attached to the Hot Air Heater for Plant Bed Heating in the Greenhouse)

  • 김영중;유영선;장진택;강금춘;이건중;신정웅
    • Journal of Biosystems Engineering
    • /
    • 제25권3호
    • /
    • pp.221-226
    • /
    • 2000
  • Hot air heater with light oil burner is the most common heater for greenhouse heating in the winter season in Korea. However, since the thermal efficiency of the heater is about 80∼85%, considerable unused heat amount in the form of exhaust gas heat discharges to atmosphere. In order to capture this exhaust heat a heat recovery system for plant bed heating in the greenhouse was built and tested in the hot air heating system of greenhouse. The heat recovery system is made for plant bed or soil heating in the greenhouse. The system consisted of a heat exchanger made of copper pipes, ${\Phi}12.7{\times}0.7t$ located in the rectangular column of $330{\times}330{\times}900mm$, a water circulation pump, circulation plastic pipe and a water tank. The total heat exchanger area is 1.5$m^2$, calculated considering the heat exchange amount between flue gas and water circulated in the copper pipes. The system was attached to the exhaust gas path. The heat recovery system was designed as to even recapture the latent heat of flue gas when exposing to low temperature water in the heat exchanger. According to the performance test it could recover 45,200 to 51,000kJ/hr depending on the water circulation rates of 330 to $690\ell$/hr from the waste heat discharged. The exhaust gas temperature left the heat exchanger dropped to $100^{\circ}C$ from $270^{\circ}C$ by the heat exchange between the water and the flue gas, while water gained the difference and temperature increased to $38^{\circ}C$ from $21^{\circ}C$ at the water flow rate of $690\ell$/hr. By the feasibility test conducted in the greenhouse, the system did not encounter any difficulty in operations. And, the system could recover 220,235kJ of exhaust gas heat in a day, which is equivalent of 34% of the fuel consumption by the water boiler for plant bed heating of 0.2ha in the greenhouse.

  • PDF

저수지에 있어서 암거배수 방법이 작물수량에 미치는 효과에 관한 시험연구 (Study on the effects of crop-yields under subsurface drainage system in the water-logging paddy fields)

  • 서승덕;김조웅
    • 한국농공학회지
    • /
    • 제19권3호
    • /
    • pp.4449-4461
    • /
    • 1977
  • Subsurface Drinage Problems arise from many causes. Flatland tends to be poorly drained, particularly where the subsoil permeability is low. There are many wet areas, however, where there is no evident connection between the area of seepage, or a high water table, and the topography of the site. High water tables may occur where the soil is either slowly or rapidly permeable, where the climate is either humid or arid, and where the land is either sloping or flat. This study is to bring light on subjects relating to increasing yield of crop and possibility of double crops a year in water logging paddy fields. Obtained results are briefly summarized as follows: 1. Effect of crop-yield in the plot A resulted 20.2 percent higher than the ordinary plot with yield of brown rice. 2. Possibility of double-crops a year is investigated. Effect of the barley production of the test plot resulted 168.2 percent higher than the other uplands near test plot with the yield of 1977 production and it is 3.8 percent higher compare with the yearly yields. 3. Decreasing depth of water level was measured 23.9mm per day and 14.3mm per day at the test plot and ordinary plot respectively and the amounts of subsurface drainage measured 30mm to 35mm per day. It is required that the relief well should be controled carefully and adequately. 4. Mean depth of ground water levl was measured 0.4∼0.5m regardless the width of corrugated pipe. It is significantly lowere than the ordinary plot(0.15∼0.20m) 5. The ground temperature of the test plot is higher 1 degree of centigarade or more than the ordinary plot and soil moisture content of the ordinary plot is higher 12.4∼27.8 percent than the plot reversely. There should be a relationship between rising of ground temperature and soil moisture.

  • PDF

튜브 트레인 공력특성 해석 (Aerodynamic Characteristics of a Tube Train)

  • 김태경;김규홍;권혁빈
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.139-150
    • /
    • 2010
  • 최근 한국에서는 세계적인 녹색기술을 맞아 향후 차세대 교통 시스템으로서 튜브 트레인 시스템의 본격적인 연구가 진행되고 있다. 한국 철도기술연구원(KRRI, Korea Railroad Research Institute)에서 튜브 트레인 시스템의 건설을 위한 목적으로 연구가 진행되고 있다. 본 논문에서는 기초연구의 일환으로 축대칭하며 긴 형상의 수송체가 가지는 다양한 튜브(터널) 내부의 압력, 막힘비율, 운행속도를 파라미터로 선정하여 전산해석을 수행하였다. 세부사항으로는 동일 형상의 운송체가 동일 운행속도를 가지고 일반적 압력의 개활지(오픈 시스템, 개활지 운행)를 운행할 때와, 다양한 환경(튜브 내 압력, 막힘비율, 운행속도)의 튜브 내부를 운행할 때에 대하여 튜브 트레인의 공력특성 연구를 수행하였다. 이를 통하여 다양한 운행속도-막힘비율 별로 개활지와 동일 에너지 효율 나오는 튜브 내 압력(P-D 관계)을 계산하였고, 막힘비율 증가에 따른 튜브 내 감압 정도(P-${\beta}$ 관계), 다양한 막힘비율-튜브 내 압력 별로 운행속도에 따른 전체 항력 양상(D-V 관계)을 보여 주었다. 그리고 개활지 운행시와 튜브 내부 운행시의 에너지 효율(주행저항)을 비교하였고, 튜브 내부 운행 시 트레인이 갖는 효율과 관계되는 충격파 발생의 임계속도(critical V-B 관계) 및 한계속도(V-P 관계)를 얻을 수 있었다. 이러한 연구의 결과는 튜브 시스템 설계 및 건설에 꼭 필요한 것이며 가이드라인을 제시했다.

  • PDF

고집광 태양광 발전을 위한 광학시스템 렌즈 개발 (The Development of the Lens of the Optical System for High Concentration Solar PV System)

  • 유광선;차원호;신구환;조희근;김용식;강성원;강기환
    • 한국태양에너지학회 논문집
    • /
    • 제31권2호
    • /
    • pp.82-88
    • /
    • 2011
  • The artificial increase in the solar intensity incident on solar cells using lenses or mirrors can allow solar cells to generate equivalent power with a lower cost. There are two types of concentration optics for solar energy conversion. One is to use mirrors, and the other is to use Fresnel lenses. The gains that can be achieved with a Fresnel lens or a parabolic mirror are compared. The result showed the gains are comparable and the two configurations were developed competitively. In application areas of Fresnel lenses as solar concentrators, several variations of design were devised and tested. Some PV systems still use commercially available flat Fresnel lenses as concentrators. A convex linear Fresnel lens to improve the concentration ratio and the efficiency is devised and flat linear Fresnel lens in thermal energy collection is utilized. In this study, we designed and optimized flat Fresnel lens and the 'light pipe' to develop 500X concentrated solar PV system. In the process, we compare the transmission efficiencies according to groove types. We performed rigorous ray tracing simulation of the flat Fresnel lenses. The computer aided simulation showed the 'grooves in case' has the better efficiency than that of 'grooves out case'. Based on the ray-trace results we designed and manufactured sample Fresnel lenses. The optical performance were measured and compared with ray-trace results. Finally, the optical efficiency was measured to be above 75%. All the design and manufacturing were performed based on that InGaP/InGaAs/Ge triple junction solar cell is used to convert the photon energy to electrical power. Field test will be made and analyzed in the near future.

설비공학회 분야의 최근 연구 동향 : 2015년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2015)

  • 이대영;김사량;김현정;김동선;박준석;임병찬
    • 설비공학논문집
    • /
    • 제28권6호
    • /
    • pp.256-268
    • /
    • 2016
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2015. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering were carried out in the areas of flow, heat and mass transfer, cooling and heating, and air-conditioning, the renewable energy system and the flow inside building rooms. Research issues dealing with air-conditioning machines and fire and exhausting smoke were reduced. CFD seems to be spreading to more research areas. (2) Research works on heat transfer area were carried out in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the economic analysis of GHG emission, micro channel heat exchanger, effect of rib angle on thermal performance, the airside performance of fin-and-tube heat exchangers, theoretical analysis of a rotary heat exchanger, heat exchanger in a cryogenic environment, the performance of a cross-flow-type, indirect evaporative cooler made of paper/plastic film. In the area of pool boiling and condensing, the bubble jet loop heat pipe was studied. In the area of industrial heat exchangers, researches were performed on fin-tube heat exchanger, KSTAR PFC and vacuum vessel at baking phase, the performance of small-sized dehumidification rotor, design of gas-injection port of an asymmetric scroll compressor, effect of slot discharge-angle change on exhaust efficiency of range hood system with air curtain. (3) In the field of refrigeration, various studies were carried in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, a cold-climate heat pump system, $CO_2$ cascade systems, ejector cycles and a PCM-based continuous heating system were investigated. In the alternative refrigeration/energy system category, a polymer adsorption heat pump, an alcohol absorption heat pump and a desiccant-based hybrid refrigeration system were investigated. In the system control category, turbo-refrigerator capacity controls and an absorption chiller fault diagnostics were investigated. (4) In building mechanical system research fields, eighteen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the user and location awareness technology applied dimming lighting control system, the lighting performance evaluation for light-shelves, the improvement evaluation of air quality through analysis of ventilation efficiency and the evaluation of airtightness of sliding and LS window systems. The subjects of building energy were worked on the energy saving estimation of existing buildings, the developing model to predict heating energy usage in domestic city area and the performance evaluation of cooling applied with economizer control. The studies were also performed related to the experimental measurement of weight variation and thermal conductivity in polyurethane foam, the development of flame spread prevention system for sandwich panels, the utilization of heat from waste-incineration facility in large-scale horticultural facilities.