• Title/Summary/Keyword: Light-off temperature

Search Result 123, Processing Time 0.033 seconds

Numerical Study on the Effect of Volume Change of Light-Off Catalyst on Light-Off Performance (저온활성촉매변환기의 체적변화가 활성화 성능에 미치는 영향에 관한 수치적 연구)

  • 정수진;김우승
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.87-100
    • /
    • 2000
  • HC and CO emissions during the cold start contribute the majority of the total emissions in the legislated driving cycles. Therefore, in order to minimize the cold-start emissions, the fast light-off techniques have been developed and presented in the literature. One of the most encouraging strategies for reducing start-up emissions is to place the light-off catalyst, in addition to the main under-body catalyst, near the engine exhaust manifold. This study numerically consider three-dimensional, unsteady compressible reacting flow in the light-off and under body catalyst to examine the impact of a light-off catalyst on thermal response of the under body catalyst and tail pipe emission. The effect of flow distribution on the temperature distribution and emission performance have also been examined. The present results show that flow distribution has a great influence on the temperature distribution in the monolith at the early stage of warm-up process and the ultimate conversion efficiency of light-off catalyst is severly deteriorated when the space velocity is above $100,000hr^{-1}$.

  • PDF

Parametric Study of Engine Operating Conditions Affecting on Catalytic Converter Temperature (엔진 문전 조건이 촉매 온도에 미치는 영향)

  • 이석환;배충식;이용표;한태식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.61-69
    • /
    • 2002
  • To meet stringent LEV and ULEV emission standards, a considerable amount of development work was necessary to ensure suitable efficiency and durability of catalyst systems. The main challenge is to cut off the engine cold-start emissions. It is known that up to 80% of the total hydrocarbons(THC) are exhausted within the first five minutes in case of US FTP 75 cycle. Close-Coupled Catalyst(CCC) provides fast light-off temperature by utilizing the energy in the exhaust gas. However, if some malfunction occurred at engine operation and the catalyst temperature exceeds 1050$\^{C}$, the catalytic converter is deactivated and shows the poor conversion efficiency. This paper presents effEcts of engine operating conditions on catalytic converter temperature in a SI engine, which are the indications of catalytic deactivation. Exhaust gas temperature and catalyst temperature were measured as a function of air/fuel ratio, ignition timing and misfire rates. Additionally, light-off time was measured to investigate the effect of operating conditions. It was found that ignition retard and misfire can result in the deactivation of the catalytic converter, which eventually leads the drastic thermal aging of the converter. Significant reduction in light-off time can be achieved with proper control of ignition retard and misfire, which can reduce cold-start HC emissions as well.

A Study of Catalyst Temperature Rise Effect by using UEGI(Unburned Exhaust Gas Ignition) Technology during Cold-Start (냉시동시 미연 배기가스 점화 기술을 이용한 촉매 온도 상승 효과에 관한 연구)

  • Kim, C.S.;Chun, J.Y.;Choi, J.W.;Kim, I.T.;Ohm, I.Y.;Cho, Y.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.335-340
    • /
    • 2000
  • Most vehicle's exhaust emissions come from the cold transient period of the FTP-75 test. In this study, UEGI technology was developed to help close-coupled catalytic converter (CCC) reach light-off temperature within a few seconds after cold-start. In the UEGI system, unburned exhaust mixture is ignited by four glow plugs installed upstream of the catalyst. Experimental results showed that the temperature of CCC rises faster with the UEGI technology, and the CCC reaches light-off temperature earlier. Under the conditions tested, the light-off time of the baseline case was 62 seconds and that of the UEGI case was 33 seconds.

  • PDF

CHANGE OF CATALYST TEMPERATURE WITH UEGI TECHNOLOGY DURING COLD START

  • CHO Y.-S.;KIM D.-S.
    • International Journal of Automotive Technology
    • /
    • v.6 no.5
    • /
    • pp.445-451
    • /
    • 2005
  • Most of the pollutants from passenger cars are emitted during the cold-transient phase of the FTP-75 test. In order to reduce the exhaust emissions during the cold-transient period, it is essential to warm up the catalyst as fast as possible after the engine starts, and the Unburned Exhaust Gas Ignition (UEGI) technology was developed through our previous studies to help close-coupled catalytic converters (CCC) reach the light-off temperature within a few seconds after cold-start. The UEGI system operates by igniting the unburned exhaust mixture by glow plugs installed upstream of the catalyst. The flame generates a high amount of heat, and if the heat is concentrated on a specific area of monolith surface, then thermal crack or failure of the monolith could occur. Therefore, it is very important to monitor the temperature distribution in the CCC during the UEGI operation, so the local temperatures in the monolith were measured using thermocouples. Experimental results showed that the temperature of CCC rises faster with the UEGI technology, and the CCC reaches the light-off temperature earlier than the baseline case. Under the conditions tested, the light-off time of the baseline case was 62 seconds, compared with 33 seconds for the UEGI case. The peak temperature is well under the thermal melting condition, and temperature distribution is not so severe as to consider thermal stress. It is noted that the UEGI technology is an effective method to warm up the catalyst with a small amount of thermal stress during the cold start period.

A STUDY ON A CATALYTIC CONVERTER OBD BEFORE LIGHT-OFF

  • Yun, Seung-Won;Son, Geon-Seog;Lee, Kwi-Young
    • International Journal of Automotive Technology
    • /
    • v.3 no.1
    • /
    • pp.33-40
    • /
    • 2002
  • Increasingly stringent emission regulations of EU and CARB (California Air resource Board) require mandatory OBD (On Board Diagnostics) far the catalytic converters of a vehicle. It demands that MIL(Malfunction Indication Light) should be tuned on to inform the driver of catalytic converter failures. Currently dual oxygen sensor method Is widely used for the converter OBD. However, since it works only alter converter light-off, it has a serious limitation when applied to TLEV or more stringent emission regulations where more than 85% of total emission is coming out before converter light-off. In addition, a recent development in catalyst material. coating technology and additive catalysts leads to a much improved OSC (Oxygen Storage Capacity) after converter light-off, current methods are very difficult to determine levels of converter aging. Therefore, it is desired to develop an OSC detecting method before converter light-off to diagnose converter failures with higher reliability. In this study, OSCs of converters are measured by an absolute measuring method and a dynamic measuring method, and some of fundamental ideas are suggested about converter OBD before converter light-off. The converters are aged with two different aging methods; those are a furnace aging and an engine bench aging: to represent aging conditions in actual field applications. Dual oxygen sensor method at the lower temperature than light-off is also studied at a model gas bench with the converters. It is fecund that there is a certain point in temperature lower than light-off where difference due to aging level becomes maximum, thus a proper dynamic method to effectively monitor catalytic converters could be implemented fur the range lower than light-off temperatures. With this result, the aging level of converters is examined at an engine bench.

Numerical Study on the Effect of Changes of Geometric Shape of Diesel Particulate Filter on Light-Off Characteristics and Transient Thermal Behavior during Regeneration (디젤입자상물질필터의 기하학적 형상변화가 재생과정 중 활성화 특성 및 비정상 온도거동에 미치는 영향에 관한 수치적 연구)

  • Jeong, Soo-Jin;Lee, Sang-Jin;Kim, Woo-Seung;Lee, Chun-Beom
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.68-76
    • /
    • 2006
  • The minimization of maximum DPF wall temperature and the fast Light-off during regeneration are the targets for the high durability of the DPF system and the high efficiency of regeneration. In order to predict transient thermal response of DPF, one-channel numerical modeling has been adopted. The effect of the ratio of length to diameter(L/D), cell density, the amount of soot loading on temporal thermal response and regeneration characteristics has been numerically investigated under two different running conditions: city driving mode and high speed mode. The results indicate that the maximum wall temperature of DPF increase with increasing 'L/D' in 'High speed mode'. For 'City driving mode', the maximum wall temperature decreases with increasing 'L/D' in the range of $'L/D{\geq}0.6'$. The maximum temperature decreases with increasing cell density because heat conduction and heat capacity are increased. It is also found that the effect of amount of soot loading on light-off time is negligible.

A Study of Light-off Performance of Catalytic Converter with the Effect of Flow Characteristics (유동특성을 고려한 촉매변환기의 활성화(Light-off) 성능에 관한 연구)

  • 정수진;김우승
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.107-120
    • /
    • 1999
  • Catalytic converters are the most fascinating and complicated chemical reactors. They are most often operated in the transient state with respect to composition, flow rate, temperature, etc. The mathermatical model developed in this work accounts for simultaneous heat and mass transfer, chemical reaction, and multi dimensional flow characteristics to analyze the light-off performance of monolithic catalytic converter with comparable mass flow rate. To validate the mathematical model, comparison between experimental and numerical results has been performed. The numerical results show a good agreement with experimental data. It is forund that inflow rate shows major effect on the characteristics of termal response of catalytic converter.

  • PDF

A Study for Fast Light-Off of a Catalyst During Cold Start (냉시동시 촉매의 예열시간 단축에 관한 연구)

  • Cho, Y.S.;Lee, Y.S.
    • 한국연소학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.69-77
    • /
    • 1998
  • In order to meet the stringent emission regulations, fast light-off of a catalyst is essential to reduce the HC and CO emissions during cold start. Cranking Exhaust Gas Ignition (CEGI) method developed in this study showed that the catalyst reaches the light-off temperature in a few seconds after cold start. The CEGI system cuts off the ignition signal for a few seconds during the cranking period. so the unburned fuel-air mixture bypasses the combustion chamber and flows through the exhaust manifold. When the unburned mixture reaches two glow plugs installed upstream of the catalyst, it burns and releases the thermal energy to heat up the catalyst. Results from the FTP-75 tests showed that the exhaust emissions with the CEGI reduced by 47.7% for THC and by 88.6% for CO in the cold-transient phase of the test.

  • PDF

Effect of Exhaust Heat Exchanger on Catalytic Converter Temperature in an SI Engine (가솔린 엔진의 배기 열교환기가 촉매 온도에 미치는 영향에 관한 연구)

  • 이석환;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.9-16
    • /
    • 2004
  • Close-coupled catalyst (CCC) can reduce the engine cold-start emissions by utilizing the energy in the exhaust gas. However, in case the engine is operated at high engine speed and load condition, the catalytic converter may be damaged and eventually deactivated by thermal aging. Excess fuel is sometimes supplied intentionally to lower the exhaust gas temperature avoiding the thermal aging. This sacrifices the fuel economy and exhaust emissions. This paper describes the results of an exhaust heat exchanger to lower the exhaust gas temperature mainly under high load conditions. The heat exchanger was installed between the exhaust manifold and the inlet of close-coupled catalytic converter. The exhaust heat exchanger successfully decreased the exhaust gas temperature, which eliminated the requirement of fuel enrichment under high load conditions. However, the cooling of the exhaust gas through the heat exchanger may cause the deterioration of exhaust emissions at cold start due to the increment of catalyst light-off time.

Dynamic Characteristics of a Urea SCR System for NOx Reduction in Diesel Engine

  • Nam, Jeong-Gil;Choi, Jae-Sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.235-242
    • /
    • 2007
  • This paper discusses dynamic characteristics of a urea-SCR (Selective Catalytic Reduction) system. The urea flow rate to improve NOx conversion efficiency is generally determined by parameters such as catalyst temperature and space velocity. The urea-SCR system was tested in the various engine operating conditions governing the raw NOx emission levels, space velocity. and SCR catalyst temperature. These experiments include cold-transients to determine catalyst light-off temperature and urea flow rate transients. Likewise. ammonia storage dynamics was also investigated. The cold-transient results indicate the light-off temperature of the catalysts used in these experiments was $200-220^{\circ}C$. The ammonia storage and urea flow rate transients all indicate very slow dynamics (on the order of seconds) which presents control challenges for mobile applications. The results presented in this paper should provide an excellent starting point in developing a functional in-vehicle urea-SCR system.