• 제목/요약/키워드: Light-emitting diodes light-curing unit

검색결과 8건 처리시간 0.029초

HALOGEN LIGHT CURING UNIT 과 LIGHT EMITTING DIODES CURING UNIT 을 이용하여 중합되어진 복합레진의 마모 특성 비교 (Wear Of Resin Composites Polymerized By Conventional Halogen Light Curing And Light Emitting Diodes Curing Units)

  • 이권용;김환;박성호;정일영;전승범
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1057-1060
    • /
    • 2004
  • In this study, the wear characteristics of five different dental composite resins cured by conventional halogen light and LED light sources were investigated. Five different dental composite resins of Surefil, Z100, Dyract AP, Fuji II LC and Compoglass were worn against a zirconia ceramic ball using a pin-on-disk type wear tester with 15 N contact force in a reciprocal sliding motion with sliding distance of 10 mm/cycle at 1Hz under the room temperature dry condition. The wear variations of dental composite resins were linearly increased as the number of cycles increased. It was observed that the wear resistances of these specimens were in the order of Dyract AP > Surefil > Compoglass > Z100 > Fuji II LC. On the morphological observations by SEM, the large crack formation on the sliding track of Fuji II LC specimen was the greatest among all resin composites. Dyract AP showed the least wear with few surface damage. There is no significant difference in wear performance between conventional halogen light curing and light emitting diodes curing sources. It indicates that a light emitting diodes (LED) source can replace a halogen light source as a curing unit for composite resin restorations.

  • PDF

Halogen Light Curing Unit과 Light Emitting Diodes Curing Unit을 이용하여 중합되어진 복합레진의 마멸 특성 비교 (Wear of Resin Composites Polymerized by Conventional Halogen Light Curing and Light Emitting Diodes Curing Units)

  • 이권용;김환;박성호;정일영;전승범
    • Tribology and Lubricants
    • /
    • 제21권6호
    • /
    • pp.268-271
    • /
    • 2005
  • In this study, the wear characteristics of five different dental composite resins cured by conventional halogen light and LED light sources were investigated. Five different dental composite resins of Surefil, Z100, Dyract AP, Fuji II LC and Compoglass were worn against a zirconia ceramic ball using a pin-on-disk type wear tester with 15N contact force in a reciprocal sliding motion of sliding distance of 10mm/cycle at 1Hz under the room temperature dry condition. The wear variations of dental composite resins were linearly increased as the number of cycles increased. It was observed that the wear resistances of these specimens were in the order of Dyract AP > Surefil > Compoglass > Z100 > Fuji II LC. On the morphological observations by SEM, the large crack formation on the sliding track of Fuji II LC specimen was the greatest among all resin composites. Dyract AP showed less wear with few surface damage. There is no significant difference in wear performance between conventional halogen light curing and light emitting diodes curing sources. It indicates that a light emitting diodes (LED) source can replace a halogen light source as curing unit for composite resin restorations.

Comparison of light transmittance in different thicknesses of zirconia under various light curing units

  • Cekic-Nagas, Isil;Egilmez, Ferhan;Ergun, Gulfem
    • The Journal of Advanced Prosthodontics
    • /
    • 제4권2호
    • /
    • pp.93-96
    • /
    • 2012
  • PURPOSE. The objective of this study was to compare the light transmittance of zirconia in different thicknesses using various light curing units. MATERIALS AND METHODS. A total of 21 disc-shaped zirconia specimens (5 mm in diameter) in different thicknesses (0.3, 0.5 and 0.8 mm) were prepared. The light transmittance of the specimens under three different light-curing units (quartz tungsten halogen, light-emitting diodes and plasma arc) was compared by using a hand-held radiometer. Statistical significance was determined using two-way ANOVA (${\alpha}$=.05). RESULTS. ANOVA revealed that thickness of zirconia and light curing unit had significant effects on light transmittance ($P$ <.001). CONCLUSION. Greater thickness of zirconia results in lower light transmittance. Light-emitting diodes light-curing units might be considered as effective as Plasma arc light-curing units or more effective than Quartz-tungsten-halogen light-curing units for polymerization of the resin-based materials.

Comparison of the bonding strengths of second- and third-generation light-emitting diode light-curing units

  • Lee, Hee-Min;Kim, Sang-Cheol;Kang, Kyung-Hwa;Chang, Na-Young
    • 대한치과교정학회지
    • /
    • 제46권6호
    • /
    • pp.364-371
    • /
    • 2016
  • Objective: With the introduction of third-generation light-emitting diodes (LEDs) in dental practice, it is necessary to compare their bracket-bonding effects, safety, and efficacy with those of the second-generation units. Methods: In this study, 80 extracted human premolars were randomly divided into eight groups of 10 samples each. Metal or polycrystalline ceramic brackets were bonded on the teeth using second- or third-generation LED light-curing units (LCUs), according to the manufacturers' instructions. The shear bond strengths were measured using the universal testing machine, and the adhesive remnant index (ARI) was scored by assessing the residual resin on the surfaces of debonded teeth using a scanning electron microscope. In addition, curing times were also measured. Results: The shear bond strengths in all experimental groups were higher than the acceptable clinical shear bond strengths, regardless of the curing unit used. In both LED LCU groups, all ceramic bracket groups showed significantly higher shear bond strengths than did the metal bracket groups except the plasma emulation group which showed no significant difference. When comparing units within the same bracket type, no differences in shear bond strength were observed between the second- and third-generation unit groups. Additionally, no significant differences were observed among the groups for the ARI. Conclusions: The bracket-bonding effects and ARIs of second- and third-generation LED LCUs showed few differences, and most were without statistical significance; however, the curing time was shorter for the second-generation unit.

치아 충전용 복합레진의 광중합 광원 종류에 따른 마멸 비교 (Wear Of Dental Restorative Composite Resins Cured by Two Different Light Sources)

  • 김환;이권용;박성호;정일영;전승범
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2004년도 학술대회지
    • /
    • pp.350-354
    • /
    • 2004
  • In this study, the wear characteristics of five different dental composite resins cured by conventional halogen light and LED light sources were investigated. Five different dental composite resins of Surefil, Z100, Dyract AP, Fuji II LC and Compoglass were worn against a zirconia ceramic ball using a pin-on-disk type wear tester with 15 N contact force in a reciprocal sliding motion of sliding distance of 10 mm/cycle at 1Hz under the room temperature dry condition. The wear variations of dental composite resins were linearly increased as the number of cycles increased. It was observed that the wear resistances of these specimens were in the order of Dyract AP > Surefil > Compoglass > Z100 > Fuji II LC. On the morphological observations by SEM, the large crack formation on the sliding track of Fuji ?LC specimen was the greatest among all resin composites. Dyract AP showed less wear with few surface damage. There is no significant difference in wear performance between conventional halogen light curing and light emitting diodes curing sources. It indicates that a light emitting diodes (LED) source can replace a halogen light source as curing unit for composite resin restorations.

  • PDF

Biological Effects of Light-Emitting Diodes Curing Unit on MDPC-23 Cells and Lipopolysaccharide Stimulated MDPC-23 Cells

  • Jeong, Moon-Jin;Jeong, Soon-Jeong
    • 치위생과학회지
    • /
    • 제19권1호
    • /
    • pp.39-47
    • /
    • 2019
  • Background: Light-emitting diodes curing unit (LCU), which emit blue light, is used for polymerization of composite resins in many dentistry. Although the use of LCU for light-cured composite resin polymerization is considered safe, it is still controversial whether it can directly or indirectly have harmful biological influences on oral tissues. The aim of this study was to elucidate the biological effects of LCU in wavelengths ranging from 440 to 490 nm, on the cell viability and secretion of inflammatory cytokines in MDPC-23 odontoblastic cells and inflammatory-induced MDPC-23 cells by lipopolysaccharide (LPS). Methods: The MTT assay and observation using microscope were performed on MDPC-23 cells to investigate the cell viability and cytotoxic effects on LCU irradiation. Results: MDPC-23 cells and LPS stimulated MDPC-23 cells were found to have no effects on cell viability and cell morphology in the LCU irradiation. Nitric oxide (NO) and prostaglandin $E_2$ which are the pro-inflammatory mediators, and interleukin-$1{\beta}$ and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) which are the proinflammatory cytokines were significantly increased in MCPD-23 cells after LCU irradiation as time increased in comparison with the control. LCU irradiation has the potential to induce inflammation or biological damages in normal dental tissues, including MDPC-23 cells. Conclusion: Therefore, it is necessary to limit the use of LCU except for the appropriate dose and irradiation time. In addition, LCU irradiation of inflammatory-induced MDPC-23 cells by LPS was reduced the secretion of NO compared to the LPS alone treatment group and was significantly reduced the secretion of TNF-${\alpha}$ in all the time groups. Therefore, LCU application in LPS stimulated MDPC-23 odontoblastic cells has a photodynamic therapy like effect as well as inflammation relief.

고출력 발광 다이오드 광중합기의 치면열구전색제 중합능 평가 (Evaluation of High-power Light Emitting Diode Curing Light on Sealant Polymerization)

  • 박영준;이제우;라지영
    • 대한소아치과학회지
    • /
    • 제46권1호
    • /
    • pp.57-63
    • /
    • 2019
  • 이 연구의 목적은 고출력 발광 다이오드 광중합기의 Xtra Power 및 High Power mode의 짧은 중합시간이 레진 치면열구전색제의 중합에 충분한지를 확인하는 것이다. 금속 주형을 이용해 시편을 제작하여 미세경도를 측정하였으며, 기존의 발광 다이오드 광중합기로 중합한 시편의 미세경도와 비교하였다. 그 결과, High Power mode로 8초, Xtra Power mode로 3초 중합한 filled sealant와 High Power mode로 8초, 12초, Xtra Power mode로 6초 중합한 unfilled sealant의 상면과 하면 모두에서 대조군보다 유의하게 낮은 미세경도를 나타냈다(p = 0.000). 이 연구를 통하여 중합 시간과 전색제의 종류를 고려한 특정 조건에서 고출력 발광 다이오드 광중합기의 Xtra Power 및 High Power mode의 짧은 중합시간이 치면열구전색제를 적절히 중합하기에 충분하지 않음을 알 수 있었다.

발광 다이오드 광중합기의 복합레진 중합 평가 (Evaluation of New LED Curing Light on Resin Composite Polymerization)

  • 강지은;전새로미;김종빈;김종수;유승훈
    • 대한소아치과학회지
    • /
    • 제41권2호
    • /
    • pp.152-156
    • /
    • 2014
  • 최근 도입된 광범위 스펙트럼의 발광 다이오드 광중합기는 4개의 램프로 구성되어 있으며 다양한 중합 모드를 가지고 있다. 이 연구는 광범위 스펙트럼 발광 다이오드($VALO^{(R)}$, Ultradent, USA) 광중합기와 기존의 발광 다이오드 광중합기 ($Elipar^{TM}$ Freelight 2, 3M ESPE, USA)의 효율을 미세경도 시험을 통해 비교하였다. 연구에 사용한 광중합기는 $VALO^{(R)}$$Elipar^{TM}$ Freelight 2이며 중합 시간은 제조사의 지시에 따랐다. $37^{\circ}C$의 생리식염수에 중합된 레진 시편을 24시간 동안 보관한 후 미세경도 시험을 시행하였다. 시편 상부와 하부의 복합레진 미세경도는 공분산분석을 시행하였다. 광범위 스펙트럼의 발광 다이오드 광중합기를 이용하여 고성능 모드에서 4초, 플라즈마 모드에서 20초 광중합을 실시한 복합레진 시편의 상부는 기존의 발광 다이오드 광중합기에 비해 미세경도가 증가하였으나(p < 0.05), 시편의 하부에서는 실험에 사용된 광중합기 간에 유의성 있는 차이를 보이지 않았다.