• Title/Summary/Keyword: Light-activated

Search Result 386, Processing Time 0.023 seconds

A STUDY ON THE DEPTH OF POLYMERIZATION OF VISIBLE LIGHT ACTIVATED COMPOSITE RESINS (가시광선(可視光線)이 복합(複合)레진의 경화(硬化)에 미치는 효과(效果)에 관(關)한 연구(硏究))

  • Chung, Sae-Joon;Lee, Myung-Jong
    • Restorative Dentistry and Endodontics
    • /
    • v.10 no.1
    • /
    • pp.145-152
    • /
    • 1984
  • The purpose of this study was to compare combinations of the four visible light irradiating appliances (Translux, Heliomat, Pluraflex HL 150, Omega) and the four visible light activated composite resins (Durafil, Heliosit, Plurafil-super, Silux) to determine the depth of polymerization of each combination. Twenty samples were made with Durafil. Five samples were polymerized for 20 seconds using Translux, five with Heliomat, five with Pluraflex HL 150, five with Omega. Twenty samples were made with Heliosit, twenty with Plurafil-super, and twenty samples with Silux. A 20-second polymerization time was applied with each of 4 visible light irradiating appliances to 5 samples of each material. Eighty samples were treated in a like manner, but polymerization was extended to 40 seconds. Depth of polymerization were measured with caliper. The results were as follows. 1) Of the two time exposures, 40-second exposure provided a significantly greater depth of polymerization than 20-second for each light with each material. 2) Durafill-Translux system showed minimum depth of polymerization, and Plurafil-Pluraflex system showed maximum depth of polymerization. 3) Visible light irradiating appliances were able to harden the resins cured by tire visible lights of other makers' apparatuses. 4) In all circumstances, depth of polymerization was between 3.0-3.8mm.

  • PDF

Study of Europium-activated Calcium Aluminium Silicate Phosphors (유로피움-활성화 칼슘 알루미늄 실리케이트 형광체 연구)

  • Hwang, Jung-Ha;Park, Ju-Seok;Jang, Bo-Yun;Nahm, Sahn;Kim, Joon-Soo;Yu, Soon-Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.11
    • /
    • pp.1020-1024
    • /
    • 2006
  • Europium$(Eu^{2+}\;or\;Eu^{3+})$-activated calcium aluminium silicate phosphors were synthesized for the first time and the structures and luminescence characteristics of these phosphors were investigated. The phosphors in this study emitted blue, green, and even red light depending on the starting milterials and annealing conditions for synthesis. In addition, the structure was also changed when the different starting materials were used. When $CaCO_3$ was used as a starting material, tetragonal $Ca_2Al_2SiO_7$ was formed. However, pure green light was emitted when the annealing was conducted in reduced atmosphere and red one was emitted by annealing in air. In the case of $CaSiO_3$ as a starting material, triclinic $CaAl_2Si_2O_8$ was formed and only pure blue emission was observed. Moreover, this blue phosphor exhibited higher intensity than that of commercial YAG:Ce phosphor, which showed the possibility of application on the phosphor for new light source such as a UV-LED.

p38 mitogen-activated protein kinase-dependent activation of contractility in rat thoracic aorta

  • Yeol, An-Hui
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2001.06a
    • /
    • pp.24-24
    • /
    • 2001
  • The present study was undertaken to determine whether p38 mitogen-activated protein kinase participates in the regulation of vascular smooth muscle contraction by endothelin-I (ET-1) in rat thoracic aorta. ET-1 induced a sustained contraction. In contrast, both the intracellular Ca$\^$2+/ and myosin light chain (MLC) phosphorylations were not sustained.(omitted)

  • PDF

Research Trends of Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes (OLED용 지연형광 소재의 연구 동향)

  • Lee, Ju Young
    • Ceramist
    • /
    • v.22 no.3
    • /
    • pp.218-229
    • /
    • 2019
  • The development of highly efficient thermally activated delayed fluorescence (TADF) materials is an active area of recent research in organic light emitting diodes (OLEDs) since the first report by Chihaya Adachi in 2011. Traditional fluorescent materials can harvest only singlet excitons, leading to the theoretically highest external quantum efficiency (EQE) of 5% with considering about 20% light out-coupling efficiency in the device. On the other hand, TADF materials can harvest both singlet and triplet excitons through reverse intersystem crossing (RISC) from triplet to singlet excited states. It could provide 100% internal quantum efficiencies (IQE), resulting in comparable high EQE to traditional rare-metal complexes (phosphorescent materials). Thanks to a lot of efforts in this field, many highly efficient TADF materials have been developed. This review focused on recent molecular design concept and optoelectronic properties of TADF materials for high efficiency and long lifetime OLED application.

Cyanide Attenuation by Granular Activated Carbon and UV-Light (활성탄 및 자외선을 이용한 시안 저감 특성 연구)

  • Lee, Hyo-Eun;Kim, Young-Jae;Park, Soo-Oh;Sung, Yoo-Hyun;Park, Chan-Oh;Lee, Hyun-Ju;Jang, Min;Lee, Young-Jae
    • Economic and Environmental Geology
    • /
    • v.44 no.6
    • /
    • pp.485-492
    • /
    • 2011
  • Sorption of cyanide on granular activated carbon and attenuation of the cyanide by UV-light over a wide range of conditions such as pH and concentration were investigated through batch experiments. Cyanide uptake by activated carbon is much effective at $[CN]_{ini}$ < 2 mg/L. The sorption of cyanide on activated carbon at pH 7.0 is greater than that of pH 9.0. It is found that the ratio of CN uptake to CN in solution increases at pH 9.0 whereas at pH 7.0 the ratio decreases, suggesting that reactivity of activated carbon increases as a function of pH. The sorption of cyanide rapidly increases during the first 30 min, followed by sharp desorption until 3hr, and then the sorption increases and reaches the maximum sorption during the duration of experiments, implying that the sorption mode could be changed through conformational change during the initial stage of the cyanide uptake by activated carbon. Total amount of cyanide desorbed from the activated carbon during the period of desorption experiments is less than 1.5% of total sorbed cyanide, indicative of strong and stable sorption of cyanide on the activated carbon. The sorption with mixture of activated carbon and Ham-Baek sludge shows less effective on the removal of the cyanide. It is noted that UV-light is much effective on the removal of cyanide but also the attenuation is achieved until $[CN]_{tot}$ is up to 10 mg/L. Our findings demonstrate that both activated carbon and UV-light are very effective on the attenuation of cyanide over a wide range of environmental conditions.

Synthesis and color-controllable luminescence in Dy3+-activated CaWO4 phosphors

  • Du, Peng;Yu, Jae Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.170.2-170.2
    • /
    • 2015
  • Enormous interest in trivalent rare-earth (RE) ions activated luminescent materials has been gaining owing to their promising applications in bio-imaging, solar cells, white light-emitting diodes and field-emission displays. Among these trivalent RE ions, dysprosium (Dy3+) was widely investigated due to its unique photoluminescence (PL) emissions. A series of Dy3+-activated CaWO4 phosphors were prepared by a facile high-temperature solid-state reaction method. The X-ray diffraction, PL spectra, cathodoluminescence (CL) spectra as well as PL decay curves were used to characterize the prepared samples. Under ultraviolet light excitation, the characteristic emissions of Dy3+ ions were observed in all the obtained phosphors. Furthermore, the PL emission intensity increased gradually with the increment of Dy3+ ion concentration, reaching its maximum value at an optimized Dy3+ ion concentration. Additionally, color-tunable emissions were obtained in Dy3+-activated CaWO4 system by adjusting the Dy3+ ion concentration and excitation wavelength. Ultimately, strong CL properties were observed in Dy3+-activted CaWO4 phosphors. These results suggested that the Dy3+-activted CaWO4 phosphors may have potential applications in the field of miniature color displays.

  • PDF

An Experimental Study on Microleakage in Light-activated Temporary Filling Materials (광중합형 임시충전재의 미세누출에 관한 실험연구)

  • Hwang, Su-Hyun;Yu, Ji-Su;Kim, Sun-Ju
    • Journal of dental hygiene science
    • /
    • v.11 no.4
    • /
    • pp.333-337
    • /
    • 2011
  • The purpose of this experiment was to examine possibility of microleakage by water, temperature change, and bite force inside the mouth during the period of using light-activated temporary filling materials. 2 kinds of light-activated temporary filling materials were used in order to measure weight and compressive strength and to evaluate microleakage between filling material and cavity wall according to frequency of thermal circulation. First, Light-activated temporary filling material was increased the weight, which was measured according to the period of using. As for the result of comparing between products, the weight of Quicks was indicated to be higher. Second, Compressive strength of Spacer had significant difference depending on period of using. However, significant difference wasn't shown in the compressive strength of Quicks. In Spacer that showed significant difference, the compressive strength increased greatly in the difference of 3 days. Third. As for micro-leakage according to frequency of thermal circulation, the microleakage was indicated to be the highest in the group that carried out 7,000 times. The group with operation of 1,000 times and the group with operation of 3,000 times were indicated the statistically lower micro-leakage than the group with operation of 7,000 times. This study brought about a rise in micro-leakage depending on the passage in the period of using. However, it is obvious fact that micro-leakage increases according to the passage of time after restoration.

The characteristics of Mn-TiO2 catalyst for visible-light photocatalyst (Mn-TiO2 촉매의 가시광촉매 특성)

  • Kim, Moon-Chan
    • Analytical Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.493-502
    • /
    • 2011
  • The catalyst works for visible-light region was characterized. Toluene, xylene, MEK and ammonia were used as reactants. The decomposition efficiency was compared between visible-light photocatalyst and UV-light one. UV-photocatalyst can be activated with UV-light wave length of 280~360 nm. However, visible-light photocatalyst can be activated with visible wave length of 400~750 nm. This result was found by using UV-Vis absorbance. A lot of materials were doped to visible light photocatalyst in order to increase its performance. Platinum was added to visible light photocatalyst with manganese in order to increase performance of the visible light photocatalyst. MTMS (Methyl tri methoxy silane) was used as a binder. Contact angle was analyzed varying with amount of binder. Contact angle was increased with increasing the amount of MTMS. As a result, the hydrophilic property of photocatalyst with MTMS binder was decreased due to its hydrophobic one. And Mn-$TiO_2$ catalyst had an excellent anti-bacterial property.

Plant Light Signaling Mediated by Phytochromes and Plant Biotechnology

  • Song, Pill-Soon
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1998.07a
    • /
    • pp.83-96
    • /
    • 1998
  • The plant pigment proteins phytochromes are a molecular light sensor or switch for photomorphogenesis involving a variety of growth and developmental responses of plants to red and far-red wavelength light. Underscoring the photomorphogenesis mediated by phytochromes is the light signal transduction at molecular and cellular levels. For example, a number of genes activated by the phytochrome-mediated signal transduction cascade have been identified and characterized, especially in Arabidopsis thaliana. The light sensor/switch function of phytochromes are based on photochromism of the covalently linked tetrapyrrole chromophore between the two photoreversible forms, Pr and Pfr. The photochromism of phytochromes involves photoisomerization of the tetrapyrrole chromophore. The "photosensor" Pr-form ("switch off" conformation) of phytochromes strongly absorbs 660 nm red light, whereas the "switch on" Pfr-conformation preferentially absorbs 730 nm far-red light. The latter is generally considered to be responsible for eliciting transduction cascades of the red light signal for various responses of plants to red light including positive or negative expression of light-responsive genes in plant nuclei and chloroplasts. In this paper, we discuss the structure-function of phytochromes in plant growth and development, with a few examples of biotechnological implications.

  • PDF

Physicochemical and Antioxidant Properties of Broccoli Sprouts Cultivated in the Plant Factory System (식물공장 시스템에서 재배한 브로콜리 새싹의 건조방법에 따른 이화학 및 항산화 특성 연구)

  • Kim, Eun Ji;Kim, Tae Su;Kim, Mi Hye
    • Journal of the Korean Society of Food Culture
    • /
    • v.28 no.1
    • /
    • pp.57-69
    • /
    • 2013
  • Recently, an interest in functional foods has been increasing. It was recommended placing a short definition. Therefore, we performed research on the chemical functions and antioxidant ability of broccoli. This research is vital for preparing the most favorable conditions and environment for highly-functional broccoli. Broccoli produced after applying sprouting and light sources were used for research. The chemical properties of the broccoli, including composition, free sugar, citric acid, mineral and vitamin (A, C, E) content, were analyzed. In addition, the ability of broccoli compounds to reduce total phenolic compounds, SOD-liked activity, EDA (electron donating ability), and hydroxyl radicals were inspected. Total analysis relied on the SAS (statistical analysis system). Broccoli sprouts produced through plant factory system's photosynthesis, treated under different light sources, had superior amounts of crude protein, crude fat, and crude ash, compared to normal sprouts under fluorescent light. Is it a facility or does it refer to the inner metabolism of the cell? Broccoli sprouts under red light had superior amounts of glucose, fructose, malic acid, and oxalic acid, while broccoli sprouts under turquoise light had superior amounts of citric acid. Broccoli sprouts under white light had superior amounts of various minerals, such as potassium, magnesium, and sodium. In terms of antioxidant activity, data from the plant factory system shows an increase in EDA antioxidants (1.63 mg/mL, 30.82%). Sprouts applied with turquoise light had superior amounts of hydroxyl radical scavenging (65.62%), and sprouts applied with white light had superior amounts of activated SOD-like activity (52.69%). Research on dehydrated broccoli sprouts showed that sprouts dehydrated with cold air had superior amount of malic, citric, oxalic acid compared to sprouts dehydrated with hot air. In terms of vitamin levels, sprouts dehydrated with cold air had five times the normal amount of vitamin A and E, whereas sprouts dehydrated with hot air had higher amounts of vitamin C. Dehydration at low temperature also produced a higher amount of activated antioxidants (1.6 mg/mL of activated antioxidant ability, 63.04% of SOD-like activity, and 67.76% of hydroxyl radical scavenging). Our results show that antioxidant ability can vary by the type of photosynthesis and temperature level in which the sprouts are dehydrated. Therefore, thorough foundational data is required to product the most functional broccoli.