• Title/Summary/Keyword: Light-Off Catalyst

Search Result 39, Processing Time 0.041 seconds

Numerical Study on the Effect of Volume Change of Light-Off Catalyst on Light-Off Performance (저온활성촉매변환기의 체적변화가 활성화 성능에 미치는 영향에 관한 수치적 연구)

  • 정수진;김우승
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.87-100
    • /
    • 2000
  • HC and CO emissions during the cold start contribute the majority of the total emissions in the legislated driving cycles. Therefore, in order to minimize the cold-start emissions, the fast light-off techniques have been developed and presented in the literature. One of the most encouraging strategies for reducing start-up emissions is to place the light-off catalyst, in addition to the main under-body catalyst, near the engine exhaust manifold. This study numerically consider three-dimensional, unsteady compressible reacting flow in the light-off and under body catalyst to examine the impact of a light-off catalyst on thermal response of the under body catalyst and tail pipe emission. The effect of flow distribution on the temperature distribution and emission performance have also been examined. The present results show that flow distribution has a great influence on the temperature distribution in the monolith at the early stage of warm-up process and the ultimate conversion efficiency of light-off catalyst is severly deteriorated when the space velocity is above $100,000hr^{-1}$.

  • PDF

Numerical Evaluation of a Radially Variable Cell Density Strategy for Improving Light-off Performance: Focusing on Light-off Catalyst (자동차용 촉매변환기의 활성화 성능 향상을 위한 횡방향 가변 셀 밀도법의 수치적 평가: 활성화 촉매변환기를 중심으로)

  • 정수진;김우승
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.115-124
    • /
    • 2002
  • The optimum design of auto-catalyst needs a good compromise between the pressure drop and flow distribution in the monolith. One of the effective methods to achieve this goal is to use the concept of radially variable cell density. However, there has been no study of evaluating the usefulness of this method on light-off catalyst. We have computationally investigated the effectiveness of variable cell density technique applied to the light-off catalyst using a three-dimensional integrated CFD model. in which transient chemical reacting calculations are involved. Computed results show that variable cell density technique can reduce the accumulated emissions of CO and HC during the early 100sec of FTP cycle by 86.78 and 80.87%, respectively, The effect of air-gap between the monoliths has been also examined. It is found that air-gap has a beneficial effect on reducing pressure drop and cold-start emissions.

Numerical Design of Light-off Auto-Catalyst for Reducing Cold-Start Emissions (냉간시동시 자동차용 저온활성촉매의 성능 향상을 위한 수치적 설계)

  • Jeong, Soo-Jin;Kim, Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.9
    • /
    • pp.1264-1276
    • /
    • 2000
  • Light-off catalyst has been used for minimization of cold-start emissions. Improved cold-start performance of light-off catalyst needs the optimal design in terms of flow distribution, geometric surface area, precious metal loading, cell density and space velocity. In this study, these influential factors are numerically investigated using integrated numerical technique by considering not only 3-D fluid flow but also heat and mass transfer with chemical reactions. The present results indicate that uneven catalyst loading of depositing high active catalyst at upstream of monolith is beneficial during warm-up period but its effect is severely deteriorated when the space velocity is above 100,000 $hr^{-1}$ To maximize light-off performance, this study suggests that 1) a light-off catalyst be designed double substrate type; 2) the substrate with high GSA and high PM loading at face be placed at the front monolith; and 3) the cell density of the rear monolith be lower to reduce the pressure drop.

A Study for Fast Light-Off of a Catalyst During Cold Start (냉시동시 촉매의 예열시간 단축에 관한 연구)

  • Cho, Y.S.;Lee, Y.S.
    • 한국연소학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.69-77
    • /
    • 1998
  • In order to meet the stringent emission regulations, fast light-off of a catalyst is essential to reduce the HC and CO emissions during cold start. Cranking Exhaust Gas Ignition (CEGI) method developed in this study showed that the catalyst reaches the light-off temperature in a few seconds after cold start. The CEGI system cuts off the ignition signal for a few seconds during the cranking period. so the unburned fuel-air mixture bypasses the combustion chamber and flows through the exhaust manifold. When the unburned mixture reaches two glow plugs installed upstream of the catalyst, it burns and releases the thermal energy to heat up the catalyst. Results from the FTP-75 tests showed that the exhaust emissions with the CEGI reduced by 47.7% for THC and by 88.6% for CO in the cold-transient phase of the test.

  • PDF

Parametric Study of Engine Operating Conditions Affecting on Catalytic Converter Temperature (엔진 문전 조건이 촉매 온도에 미치는 영향)

  • 이석환;배충식;이용표;한태식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.61-69
    • /
    • 2002
  • To meet stringent LEV and ULEV emission standards, a considerable amount of development work was necessary to ensure suitable efficiency and durability of catalyst systems. The main challenge is to cut off the engine cold-start emissions. It is known that up to 80% of the total hydrocarbons(THC) are exhausted within the first five minutes in case of US FTP 75 cycle. Close-Coupled Catalyst(CCC) provides fast light-off temperature by utilizing the energy in the exhaust gas. However, if some malfunction occurred at engine operation and the catalyst temperature exceeds 1050$\^{C}$, the catalytic converter is deactivated and shows the poor conversion efficiency. This paper presents effEcts of engine operating conditions on catalytic converter temperature in a SI engine, which are the indications of catalytic deactivation. Exhaust gas temperature and catalyst temperature were measured as a function of air/fuel ratio, ignition timing and misfire rates. Additionally, light-off time was measured to investigate the effect of operating conditions. It was found that ignition retard and misfire can result in the deactivation of the catalytic converter, which eventually leads the drastic thermal aging of the converter. Significant reduction in light-off time can be achieved with proper control of ignition retard and misfire, which can reduce cold-start HC emissions as well.

Fast Light-Off of Catalyst using Cranking Exhaust Gas Ignition (시동 배기가스 점화기술을 이용한 촉매의 예열시간 단축)

  • 조용석;엄인용;이윤석;김득상;김충식;천준영;최진욱
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.43-49
    • /
    • 2001
  • In order to satisfy the ULEV emissions regulation, fast light-off of a catalyst is essential for reduction of HC and CO emissions during the cold start. Cranking Exhaust Gas Ignition(CEGI) method developed in this study showed that the catalyst reaches the light-off temperature in a few seconds. The CEGI stops the ignition signal for a few seconds during the cranking period, so the unburned fuel-air mixture bypasses the combustion chamber and flows through the exhaust manifold. When the unburned mixture reaches two glow plugs installed upstream of the catalyst, it burns and releases the thermal energy to heat up the catalyst, In the FTP-75 vehicle tests, the CEGI showed that the exhaust emissions reduced by 47.7% for THC and by 88.6% for CO in the cold-transient phase of the test.

  • PDF

CHANGE OF CATALYST TEMPERATURE WITH UEGI TECHNOLOGY DURING COLD START

  • CHO Y.-S.;KIM D.-S.
    • International Journal of Automotive Technology
    • /
    • v.6 no.5
    • /
    • pp.445-451
    • /
    • 2005
  • Most of the pollutants from passenger cars are emitted during the cold-transient phase of the FTP-75 test. In order to reduce the exhaust emissions during the cold-transient period, it is essential to warm up the catalyst as fast as possible after the engine starts, and the Unburned Exhaust Gas Ignition (UEGI) technology was developed through our previous studies to help close-coupled catalytic converters (CCC) reach the light-off temperature within a few seconds after cold-start. The UEGI system operates by igniting the unburned exhaust mixture by glow plugs installed upstream of the catalyst. The flame generates a high amount of heat, and if the heat is concentrated on a specific area of monolith surface, then thermal crack or failure of the monolith could occur. Therefore, it is very important to monitor the temperature distribution in the CCC during the UEGI operation, so the local temperatures in the monolith were measured using thermocouples. Experimental results showed that the temperature of CCC rises faster with the UEGI technology, and the CCC reaches the light-off temperature earlier than the baseline case. Under the conditions tested, the light-off time of the baseline case was 62 seconds, compared with 33 seconds for the UEGI case. The peak temperature is well under the thermal melting condition, and temperature distribution is not so severe as to consider thermal stress. It is noted that the UEGI technology is an effective method to warm up the catalyst with a small amount of thermal stress during the cold start period.

A Study of Catalyst Temperature Rise Effect by using UEGI(Unburned Exhaust Gas Ignition) Technology during Cold-Start (냉시동시 미연 배기가스 점화 기술을 이용한 촉매 온도 상승 효과에 관한 연구)

  • Kim, C.S.;Chun, J.Y.;Choi, J.W.;Kim, I.T.;Ohm, I.Y.;Cho, Y.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.335-340
    • /
    • 2000
  • Most vehicle's exhaust emissions come from the cold transient period of the FTP-75 test. In this study, UEGI technology was developed to help close-coupled catalytic converter (CCC) reach light-off temperature within a few seconds after cold-start. In the UEGI system, unburned exhaust mixture is ignited by four glow plugs installed upstream of the catalyst. Experimental results showed that the temperature of CCC rises faster with the UEGI technology, and the CCC reaches light-off temperature earlier. Under the conditions tested, the light-off time of the baseline case was 62 seconds and that of the UEGI case was 33 seconds.

  • PDF

The Effect of Volume and Precious Metal loading on the Performance of Pd+Rh Three Way Catalysts (Pd+Rh 삼원촉매에서 촉매체적 및 귀금속량이 정화성능에 미치는 영향)

  • 김계윤
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.389-397
    • /
    • 1999
  • Recently the use of Pd catalyst have been continued to expand because of cost avaliabilityand performance advantages. Especially the Pd+Rh catalyst instead of the Pt+Rh catalyst had been used for most of three way catalysts because of the more stringent emission standards and its higher temperature effectiveness. The main purpose of this study is to investigate the design parameter impacts on the Pd+Rh cat-alyst for the automotive exhaust catalysts application. This study was investigated on the catalyst efficiency for the volume and the precious metal loading of the Pd+Rh ceramic monolithic cata-lyst. And experiments concerning the effects of volume and precious metal loading on Pd+Rh three way catalysts were conducted to examined the catalyst light-off temperature and conver-sion efficiency on higher volume demonstrated almost similar performance. But their effects on higher precious metal loading demonstrated considerably better performance.

  • PDF

Theoretical and numerical study to investigate characteristics of light-off and steady state of methane autothermal reactor for efficient light-off, high hydrogen yield and selectivity (시동 특성, 수소 생산 및 선택성 향상을 위한 자열개질기의 이론 및 수치해석적 연구)

  • Lee, Shin-Ku;Bae, Joong-Myeon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3353-3358
    • /
    • 2007
  • The present paper is devoted to investigate dynamic effect and steady-state performance of methane autothermal reformer theoretically and numerically. In order to simplify the complicated phenomena in the system, axisymmetric heterogeneous reactor model is developed. As autothermal reaction takes places on catalyst surface between bulk gas and catalyst, volume averaging method is incorporated using porous medium approach. To understand the start-up process which occurs in the reactor is highly important. Therefore, in this paper we get various goverining equations to find out transient and steady solutions and time scale for start-up introducing dimensionless variables. Start-up is a significant issue in reforming reaction for automobile system and fueling of SOFC-based auxiliary power units. This paper deals with characteristics of heat and mass transfer and predicted light-off time in the reformer as oxygen to carbon ratio ($O_2$/C) and amount of feeding gas.

  • PDF