• Title/Summary/Keyword: Light weight soil

Search Result 158, Processing Time 0.024 seconds

Effect of Soil Moisture Content on Photosynthesis and Root Yield of Panax ginseng C. A. Meyer Seedling (토양수분함량이 묘삼의 광합성 및 근 수량에 미치는 영향)

  • Lee, Sung-Woo;Hyun, Dong-Yun;Park, Chun-Geun;Kim, Tae-Soo;Yeon, Byeong-Yeol;Kim, Chung-Guk;Cha, Seon-Woo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.6
    • /
    • pp.367-370
    • /
    • 2007
  • To make the soil moisture proper is the important factor in the seedbed cultivation of Yangjik for producing a good quality of ginseng seedling. This study was carries out to investigate the effect of soil moisture on photosynthesis and yield of ginseng seedling under the different condition of the soil moisture, such as $100{\sim}400$ mbar. Photosynthesis rate was decreased gradually by the reduction of soil moisture, and in particular it was decreased distinctly under the lower condition of soil moisture, such as $300{\sim}400$ mbar. Photosynthesis rate in air temperature of $30^{\circ}C$ was decreased more distinct than that of $25^{\circ}C$, Light saturation point of leaves was at the quantum of $600{\mu}mol/m^3/s$ at $25^{\circ}C$ while it was decreased by $300{\mu}mol/m^3/s$ at $30^{\circ}C$ according to the increase of air temperature. Respiration rate was increased by the increase of quantum, and decreased by the reduction of soil moisture. Respiration rate under the condition of high quantum was increased regardless of air temperature, but it was decreased distinctly under the condition of low soil moisture and high air temperature, such as 400 mbar at $30^{\circ}C$. There were a gradual decrease by the reduction of soil moisture in leaf length, leaf width, chlorophyll content, and water content of leaves, but heat injury ratio was increased distinctly by the reduction of it. Total root weight, root weight per plant, the yield of usable seedling were decreased by the reduction of soil moisture, and optimal content of soil moisture to produce a good quality of seedling was 63% of field capacity or 18.9% in absolute soil moisture content.

Equilibrium Sorption of Heavy Metals (Pb, Cu. Zn, Cd) onto Scoria

  • Kwon, Jang-Soon;Yun, Seong-Taek
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.302-305
    • /
    • 2002
  • Scoria is a bomb-sized, generally vesicular pyroclast that is red or black in color and light in weight. In this study, scoria from Cheju was examined for the use as a sorbent. It is composed of plagioclase, olivine, hornblende, pyroxene, and glass, with an average composition of 49.84% SiO$_2$, 14.07% A1$_2$O$_3$, End 9.14% Fe$_2$O$_3$. Studies on kinetic isotherm sorption of Zn(II) onto scoria under various parameters such as initial zinc concentration, particle size, and adsorbent/adsorbate ratio were carried out using an agitated batch. The results suggest that the smaller scoria size and the larger adsorbent/adsorbate ratio produce the higher degree of Zn(II) removal. More effective removal also appears at lower initial Zn concentration. The sorption behavior of Zn(II) onto scoria seems to be mainly controlled by cation exchange. Studies on equilibrium isotherm sorption of other heavy metals (Pb, Cu, Cd) onto scoria were also conducted and compared with those onto powdered activated carbon (PAC) and non-organic matter scoria (NOS), The results suggest that the Cheju scoria has the slightly higher sorption capability than PAC and NOS, and the order of the effective sorption onto scoria and PAC is Pb > Cu > Zn > Cd. The monometal sorption onto scoria is more stronger than the competitive sorption.

  • PDF

Effect of Reflective Film Mulching on the Growth and Flowering of Antirrhinum majus L. 'Fujinoyuki' in Greenhouse Cultivation (시설재배에서 반사필름 멀칭이 금어초 생육 및 개화에 미치는 영향)

  • Kim, Wan-Soon;Huh, Kun-Yang;Cho, Il-Hwan;Woo, Yong-Hoe
    • Horticultural Science & Technology
    • /
    • v.16 no.3
    • /
    • pp.350-351
    • /
    • 1998
  • This study was conducted to investigate the effect of reflective film(RF) mulching on the growth and flowering of snapdragon 'Fujinoyuki' in greenhouse cultivation. On the spectroradiometry of mulching materials in the wavelength zone of 300nm to 1100nm, 85% of total light source was reflected from RF, while over 95% was absorbed into black polyethylene film(BL). Under plant canopy, light, air temperature, and leaf temperature were higher on the RF mulching than BL, but soil temperature and soil heat flux were higher under the BL. Primary plant growth such as dry weight, stem hardness, lodging, and transpiration was superior when using RF mulching. RF mulching accelerated the plants to bloom about 12 days earlier with admirable cut flower quality.

  • PDF

Seismic vulnerability of reinforced concrete building structures founded on an XPS layer

  • Koren, David;Kilar, Vojko
    • Earthquakes and Structures
    • /
    • v.10 no.4
    • /
    • pp.939-963
    • /
    • 2016
  • According to the new directives about the rational and efficient use of energy, thermal bridges in buildings have to be avoided, and the thermal insulation (TI) layer should run without interruptions all around the building - even under its foundations. The paper deals with the seismic response of multi-storeyed reinforced concrete (RC) frame building structures founded on an extruded polystyrene (XPS) layer placed beneath the foundation slab. The purpose of the paper is to elucidate the problem of buildings founded on a TI layer from the seismic resistance point of view, to assess the seismic behaviour of such buildings, and to search for the critical parameters which can affect the structural and XPS layer response. Nonlinear dynamic and static analyses were performed, and the seismic response of fixed-base (FB) and thermally insulated (TI) variants of nonlinear RC building models were compared. Soil-structure interaction was also taken into account for different types of soil. The results showed that the use of a TI layer beneath the foundation slab of a superstructure generally induces a higher peak response compared to that of a corresponding system without TI beneath the foundation slab. In the case of stiff structures located on firm soil, amplification of the response might be substantial and could result in exceedance of the superstructure's moment-rotation plastic hinge capacities or allowable lateral roof and interstorey drift displacements. In the case of heavier, slenderer, and higher buildings subjected to stronger seismic excitations, the overall response is governed by the rocking mode of oscillation, and as a consequence the compressive strength of the XPS could be insufficient. On the other hand, in the case of low-rise and light-weight buildings, the friction capacity between the layers of the applied TI foundation set might be exceeded so that sliding could occur.

Plant Growth Promoting Activities of Some Rhizosphere Bacteria and their Effect on Brassica rapa Growth

  • Hussein, Khalid A.;Jung, Yeong Sang;Joo, Jin Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.3
    • /
    • pp.141-146
    • /
    • 2014
  • The necessity to develop economical and eco-friendly technologies is steadily increasing. Plant growth promoting rhizomicrobial strains PGPR are a group of microorganisms that actively colonize plant roots and increase plant growth and yield. Pot experiments were used to investigate the potential of some rhizobacterial strains to enhance the Brassica rapa growth. Microbial strains were successfully isolated from the rhizosphere of Panax ginseng and characterized based on its morphological and plant growth promotion characters. Surface disinfected seeds of Wisconsin Fast B. rapa were inoculated with the selected PGPR microorganisms. The different pots treatments were inoculated by its corresponding PGPR ($10^7cfu\;mL^{-1}$) and incubated in the growth chamber at $25^{\circ}C$ and 65% RH, the light period was adjusted to 24 hours (day). NPK chemical fertilizer and trade product (EMRO, USA) of effective microorganisms as well as un-inoculated control were used for comparison. Plants harvested in 40 days were found to have significant increase in leaf chlorophyll units and plant height and also in dry weight of root and shoot in the inoculated seedlings. Root and shoot length and also leaf surface area significantly were increased by bacterial inoculation in sterile soil. The study suggests that Rhodobacter capsulatus and Azotobacter chroococcum are beneficial for B. rapa growth as they enhance growth and induced IAA production and phosphorus solubilization. This study presents some rhizomicrobial strains that significantly promoted growth of Wisconsin Fast Plant B. rapa in pot experiment under different soil conditions.

Optimization of Cultivation Conditions on Effective Seedlings of Veronica rotunda var. subintegra (Nakai) T.Yamaz. (산꼬리풀의 효과적인 육묘를 위한 재배조건 최적화)

  • Lee, Sang In;Yeon, Soo Ho;Cho, Ju Sung;Jeong, Mi Jin;Lee, Cheol Hee
    • Journal of Bio-Environment Control
    • /
    • v.29 no.2
    • /
    • pp.181-188
    • /
    • 2020
  • This study was conducted to identify the optimal conditions for seedling growth in Veronica rotunda var. subintegra (Nakai) T.Yamaz. which a endemic plant and can be development as ornamental plants. We sowed V. rotunda var. subintegra (Nakai) T.Yamaz. seeds, and exposed the seedling was different treatment conditions. We varied soil type and fertilizer concentration, shading ratio, additional fertilizer concentration, pretreatment light exposure and collection time of seeds. We found that seedling growth was good in horticultural substrate (with no additional fertilizer), but mixed soils supplemented with fertilizer inhibited growth, regardless of the fertilizer concentration. In the 55% shading treatment, seedling growth was greater than in the non-shading treatment. High concentration addition of fertilizer (Hyponex) promoted plant growth, in terms of both plant length and fresh weight. Exposure of seeds to a red light-source prior to germination had a greater effect on seedling growth than exposure to other light sources. Seedlings exhibited better growth when grown from seed collected in 2018, rather than 2017.

A Study on the Uplift Capacity of Plane and Corrugated Pile Foundations for Pipe Frame Greenhouse (파이프 골조온실의 민말뚝 기초와 주름말뚝 기초의 인발저항력에 대한 실험적 연구)

  • 조재홍;윤용철;윤충섭;서원명
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.255-261
    • /
    • 1998
  • The recent greenhouses are extremely light-weight structures and easily damaged by the strong winds due to the lack of uplift capacity of pile foundations. The uplift capacity of pile foundations are subject to the shape of the pile surface, diameter, weight, and embedded depths. etc. So, it is very important to figure out the most appropriate conditions on shape of the pile surface and it's embedding depths. to improve wind proof capability of pipe greenhouses. In this study, plane and corrugated pile surfaces were examined on their uplift capacity with 30 to 50 cm of embedding depths. The diameters of tested piles were 10 cm, 15 cm, and 20 cm, respectively. Compaction ratio of the tested soil was 80%. Each test run was repeated three times for the respective treatment. Obtained results are as follows; In all cases, as the diameter and the embedding depth were increased, the ultimate uplift capacity of the pile was also increased. And it was clear that the ultimate uplift capacity of corrugated pile was approximately two times as big as that of plain piles under same conditions.

  • PDF

THE EFFECTS OF DIFFERENT SHADING OF MULCHING ON YIELD OF ROOT AND QUALITY IN PANAX GINSENG

  • Yang Yeong-yuh
    • Proceedings of the Ginseng society Conference
    • /
    • 1974.09a
    • /
    • pp.137-146
    • /
    • 1974
  • This experiment was on the purpose to study the effects of different shading of Mulching treatments on the quality and yield of ginseng root. This experiment were conducted at Mei-Feng for one year, from July, 1972 to July, 1973. The variety been used was introduced Korea Panax ginsvng. Three different Shading of Mulching treatments have been studied. The results were summerized as follows: 1. The growth of ginseng plant is good under around 4,300 Lux of light intensity. Fig . showed the shadow treatment of straw had a better effect than that of black or grey plastic film. The differences between treatments were significant. 2. The adequate soil temperature for ginseng culture was in the range of $16-18^{\circ}C$. Fig 2. showed that there were significant differences among treatments, of which the straw shadow treatment had the best effect. 3. The growth of ginseng plant was greatly affected wth various shadow treatments. Fig 1. showed both straw and black plastic film treatments had a better effects on growth of stem, leaf area and leaf numbers. 4. Fig. 2. 3. 4. 5 indicated there were distingished differences among all treatments. The straw and black plastics film mulching treatments had a better effects on root length, root diameter, root weight and leaf weight than the grey plastic film. 5. The amount of plant alkaloids and panacene content had related to the shadow treatment, as showed in Fig. 6 and 7 that straw shadow treatment had greatly increased the procuction of plant alkaloids and panacene content. 6. The quality and yield of roots of ginseng greatly affected by different shading of mulching treatments.

  • PDF

Study on the Salt Tolerance of Rice and Other Crops in Reclaimed Soil Areas (Ⅹ) Responce of Rice Population to Varying Plant Density and N Levels in Reclamined Salty Area (간척지에서 수도 및 기타작물의 내염성에 관한 연구 (제10보) 간척지에서 재식밀도와 N 수준 변동에 대한 수도개체군의 반응에 관하여)

  • 임형빈
    • Journal of Plant Biology
    • /
    • v.13 no.3
    • /
    • pp.1-16
    • /
    • 1970
  • Field studies were conducted with kusabue variety and factorial design of 12 treatments composed of 3 levels, 10 kg, 15 kg and 20 kg of N per 10 a , and 4 levels of 80, 100, 120, and 140 hills per $3.3m^2$ plot in reclaimed slaty area having an average of 0.48% salt concentration. The law of spacing effect was observed in the increase of the number of stems at any application levels of N, and the increased N application exceeding 15 kg N per 10 a did not increase the number of stems in maximum tillering stages. The light recieving efficiency of plant population was greatly reduced by close planting when compared with the effect of increased N applications in heading stage. The spacing effect on the C/F ratio was not noted but was reduced markedly by the increased N applications, accordingly the spacing effect on rough rice yields to the LAI was less than by the increase N application. Closer spacing increased the number of panicle, and non-effective stems, decreased the number of grains per panicle and panicle weight. The increased N applications also increased the number of panicle, reduced the weight of 1,000 grains and the ratio of matured grains. It was recommended to plant 100 hills per $3.3m^2$ with the application of 15 kg N per 10 a in the reclaimed salty area of Korea.

  • PDF

Geotechnical Applications of Industrial By-products for Reducing Environmental Impacts - ln the Case of Pulverized Coal Fly Ashes -

  • Kazuya Yasuhara;Sumio Horiuchi;Hideo Komine
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.10a
    • /
    • pp.29-62
    • /
    • 2001
  • Based on the results from investigation of behaviour of pulverized fly ashes (PFA) at laboratory and field, the way how to reduce the environmental impacts to geotechnical practices Is considered and described. In order to reduce discharged industrial by-products, it should primarily be emphasized that an effort are made as much as possible not to put into homing. Secondarily, an effort must be made to increase amount of utilization to geotechnical engineering practices. In addition, from an environmental point of view, we should challenge to create innovative materials which are eligible for controlling other wastes and remedying contamination m soils by using industrial byproducts which belong to wastes This Is a new concept in which the polluting materials can be eliminated by making use of wastes. Based on the above-stated concept, the previous and possible utilization of PFA is classified into: (1 ) reclamation, embankment or backfill material, (2) light weight geo-material, (8) soil stabilization/improvement, and (4) environmental material. The reason why PFA, in particular, slurry PFA has been used and will possibly be used more widely is due to the fact that PFA has the advantages : (i) low specific gravity leading to a light weight geomaterial, (ii) high pozzolanic activity enhancing strength, especially due to cement addition, and (iii) spherical shape of particles producing isotropy and then pumpability. As well as the concept of reducing geo-environmental impacts, the present text mainly describes the successful results at laboratory and field which have been obtained by the authors. The most important issue hi application of byproducts including PFA for geotechnical practices is to prevent leakage of polluted substances from sedimentary deposits, ground and earth structures. As one of possible techniques far achieving this purpose, a method of washing off the polluted substances by hot water is described.

  • PDF