• Title/Summary/Keyword: Light weight soil

검색결과 156건 처리시간 0.02초

Grapevine Growth and Berry Development under the Agrivoltaic Solar Panels in the Vineyards (영농형 태양광 시설 설치에 따른 포도나무 생육 및 과실 특성 변화 비교)

  • Ahn, Soon Young;Lee, Dan Bi;Lee, Hae In;Myint, Zar Le;Min, Sang Yoon;Kim, Bo Myung;Oh, Wook;Jung, Jae Hak;Yun, Hae Keun
    • Journal of Bio-Environment Control
    • /
    • 제31권4호
    • /
    • pp.356-365
    • /
    • 2022
  • Agrivoltaic systems, also called solar sharing, stated from an idea that utilizes sunlight above the light saturation point of crops for power generation using solar panels. The agrivoltaic systems are expected to reduce the incident solar radiation, the consequent surface cooling effect, and evapotranspiration, and bring additional income to farms through solar power generation by combining crops with solar photovoltaics. In this study, to evaluate if agrivoltaic systems are suitable for viticulture, we investigated the microclimatic change, the growth of vines and the characteristics of grape grown under solar panels set by planting lines compared with ones in open vineyards. There was high reduction of wind speed during over-wintering season, and low soil temperature under solar panel compared to those in the open field. There was not significant difference in total carbohydrates and bud burst in bearing mother branches between plots. Despite high content of chlorophyll in vines grown under panels, there is no significant difference in shoot growth of vines, berry weight, cluster weight, total soluble solid content and acidity of berries, and anthocyanin content of berry skins in harvested grapes in vineyards under panels and open vineyards. It was observed that harvesting season was delayed by 7-10 days due to late skin coloration in grapes grown in vineyards under panels compared to ones grown in open vineyards. The results from this study would be used as data required in development of viticulture system under panel in the future and further study for evaluating the influence of agrivoltaic system on production of crops including grapes.

Effect of Different Wind-break Net on Reducing Damage of Cold Sea Wind (수도 풍해경감을 위한 방풍강 강목의 효과)

  • 이승필;김상경;이광석;최대웅;김칠용
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • 제35권4호
    • /
    • pp.352-361
    • /
    • 1990
  • The reducing effect of wind injury was investigated using several wind-break nets in Youngdeok province where cold-wind damage is often occurred during rice growing season. The white-head damage of rice have been often occurred by typhoon during the period between August 15 to September 10 in the cold wind area of the eastern coastal during the last 11 years (1979-1989). This may suggest that the critical period for heading will be by August 15 in the regions. High evaporation coefficient, more than 250 due to typhoon passage over the regions resulted high injury of white head. Generally, the wind injury have been caused by warm and dry westerlies through Fohn apperance in Taebaeg mountains and by cool-humid wind which blows from coast to inland. The frequency of occurrence of the two types of typhoons were 25, 20%, respectively during rice cultivation. The instalation of wind-break net significantly reduced the wind blowing speed, depending on the net mesher with the higher effect in dence net. The distances between the net and cropping area also affect the wind speed: 23% reduction at 1m distance. 34% at 10m and 28% at 20m, respectively. The reducing effect was also observed even at 10 times height of the wind-break net. The instalation of wind-break net gave several effects on climate factor, showing that temperature increased by 0.8$^{\circ}C$(maximum), 0.7$^{\circ}C$(minimum), 0.6$^{\circ}C$(average) : water temperatures increased by 0.5$^{\circ}C$(maximum), 0.6$^{\circ}C$(minimum), 0.5$^{\circ}C$(average) : soil temperature increased 0.4$^{\circ}C$. The earlier heading and increasing growth rate, use of light, culm length, panicle number per hill, spikelet number per panicle, fertility and 1,000 grain weight were observed in the fields with the wind-break nets resulting in 10-15% increase in rice yield using 0.5${\times}$0.5cm nets. The increasing seedlings per hill gave higher grain yield by 13% in the cold wind damage regions of eastern coastals. and the wind-break was more significant in the field without the wind-break net. Wind injury of rice plant in the cold wind regions of eastern coastals in korea could be reduced by selection of tolerant varieties to wind injury, adjustment of transplanting time, and establishment of wind-break nets.

  • PDF

평행식 진동탄환 암거 천공기의 연구 (IV)(V)-실기 설계 제작 및 보장실험-Development of Balanced-Type Oscillating Mole Drainer(IV)(V)

  • 김용환;이승규;서상용
    • Journal of Biosystems Engineering
    • /
    • 제2권1호
    • /
    • pp.7-24
    • /
    • 1977
  • This paper is the forth and fifth one of the study on balanced type oscillating mole drainer. In the light of the results from previous reports about the model tests, some design criteria were established and a prototype machine was set up for experimental purpose. Motion characteristics and functionof the each parts of the machine were checked and analyzed. After that, performance tests of the prototype machine were carried out in thefield. Obtained results are summarized as follows ; 1. Ten centimeter of the bullet diameter was determined so as to be able to attach it to the tractors with capacity of 30 PS to 40 PS. 2. To maintain the balance between the moments of the front shank and rear shank, the oscillating amplitude of the rear bullet was determined to be larger than that of the front bullet. At the same time , the oscillating direction of the rear bullet was designed with the inclines of ten to thirty degrees. 3. An octagonal dynamo transduced was developed for measuring the compressive force of the upper link is measuring the draft force of the machine. Acceptable linear relationship between forces and strain responses from O.D.T. was obtained. 4. Analysing the balancing mechanism of the acting part of the machine , it was found that the total draft force of the machine was equal to the difference between the sum of the draft force produced from the right and left side bending moments of the lower drawber and the compressive force on the upper link. 5. There are acceptable linear relationship between the strain and twisting moment by driving shaft, and between strain and shank moment. Above results enable us to carry out the field experiment with prototype machine. 6. When the test machine was used in the field, it was possible to reduce the oscillating acceleration by forty percent in average as compared it with the single bullet mole drainer. 7. When the test machine was used under the oscillating condition, the dratt torce was reduced by 27 percent to 59 percent as compared it with the test machine under non-oscillating condition, while the draft force was increased by 7 percent to 20 percent as compared it with the mole drainer having oscillating single bullet. The reasoning behind this fact was considered as the resistance force due to the rear shank and bullet. 8. As the amplitude and frequency of the bullet were increased, the torque was increased accordingly. This tendency could be varied with the various characteristics of the given soils. And the larger frequency and amplitute, the more increasing oscil\ulcornerlating power but decreasing draft brce were needed, and draft force was increased as the velocity was increased.9. When the amplitude of the rear bullet was designed to be larger than that of the front bullet, the minimum value of the moment was lowered and oscillating acceleration was reduced. And when the oscillating direction of the rear bullet was declined back\ulcornerwards, oscillating acceleration was increased along with the increasing angle of decli\ulcornernation. When the test machine was operated in high speed, the difference between maximum moments and minimum ones became narrow. This varying magnitude of moments appeared on the moment oscillogram seems to be correlated to the oscillating acceleration and draft force. 10. From the analysis of variance, it was found that those factors such as frequency, amplitude, and operating velocity significantly affected in the oscillating acceleration, the draft resistance, the torque, the moment, and the total power required. And interaction between frequency and amplitude affected in the oscillating acceleration. 11. Within the given situation of this study, the most preferable operating conditions of the test machine were 7 Hz in oscillating frequency, 0.54 m/sec in operating velocity, and 39.1 mm in oscillating amplitude of front and rear bullets. However, it is necessary to select the proper frequency and magnitude of oscillation depending on the soil properties of the field in which the mole drainer is practiced by use of a bal1nced type oscillating mole drainer. 12. It is recommended that a comparative study of the mole drainers would be performed in the near future using two separate balanced oscillating bullet with the one which is operated by oscillating the movable bullet in a single cylinder or other balanced type which may be single oscillating bullet with spring, damper or balancing weight, and that of thing. To expand the applicability of the balanced type oscillating mole drainer in practical use, it is suggested to develop a new mechanism which perform mole drain with vinyl pipe or filling material such as rice hull.

  • PDF

Effects of Dense Planting on the Growth and Producivity in Hot Pepper(Capsicum annum L.) (재식밀도(裁植密度)가 고추의 생육(生育) 및 생산성(生産性)에 미치는 영향(影響))

  • Kim, Kwang-Yong;Park, Sang-Keun;Lim, Sang-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • 제2권1호
    • /
    • pp.45-54
    • /
    • 1983
  • This experiment was carried out to investigate effects of dense planting on the growth and productivity in varieties of hot pepper at open field. Three varieties (Joseng jinheung, Weonkyo No. 304 and Bulam house Putgochu) were sowed on Jan. 30th and transplanted on May 12th. The planting densities used were 3,300, 5,500 and 8,300 plants per 10a. The results obtained are as follows: 1) With higher plant density, the plant shape was changed from open-type to upright-type and the yield was increased, presumably due to the increase of leaf area index. 2) LAI and SLA per unit area were increased by denser planting. Wonkyo No. 304 presented the highest LAI and the lowest SLA. 3) Dry matter weight per unit area was also increased, however the LW/SW ratio was tended to decrease on denser planting. 4) Through crop growth analysis, it was determined that CGR and NAR were increased during the early growth stages and became decreased from last June. 5) Light intensity under the canopy formed by denser planting was decreased by 40% measured at 60 ㎝ above the soil surface. The vertical distribution of fruits became concentrated the upper part of plant. Fruit yield per unit area in denser planting was increased as compared to the conventional planting. The number of fruit setting decreased. 6) Generally, no differences in yield were detected in comparison between denser planting and conventional planting harvested on Aug. 30th and Oct. 15th, respectively. But Weonkyo No. 304 increased yield by 18% in denser planting.

  • PDF

Changes in Growth and Yield of Different Rice Varieties under Different Planting Densities in Low-Density Transplanting Cultivation (벼 드문모심기 재식밀도에 따른 품종별 생육 및 수량 변이)

  • Yang, SeoYeong;Hwang, WoonHa;Jeong, JaeHyeok;Lee, HyeonSeok;Lee, ChungGeun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • 제66권4호
    • /
    • pp.279-288
    • /
    • 2021
  • Low-density transplanting is a cultivation technology that reduces labor and production costs. In this study, the growth and yield of several varieties with different tillering characteristics were analyzed in order to establish an appropriate planting density for low-density transplanting. Varieties with Low-Tillering (LT), Medium-Tillering (MT), and High-Tillering (HT) were planted at a density of 37-80 hills/3.3 m2. As the planting density decreased, the number of tillers per hill increased, but the number of tillers per square meter of hill decreased, especially for the LT variety. Decreasing density extended the tillering stage, which was longest in the LT variety. As the planting density decreased, SPAD(Soil plant analysis development, chlorophyll meter) values just before heading increased while canopy light interception decreased. Such changes were much greater in the LT variety than in the MT and HT varieties. The heading date tended to be delayed by 0-2 days as the planting density decreased, and there was no difference in the length of the period from first heading to full heading. As the number of spikelets per panicle increased, the number of spikelets per square meter did not differ according to the planting density. Decreasing planting density did not affect the grain weight; nevertheless, the yield ultimately decreased because of the decreasing ripening rate. The optimal planting density for stable low-density transplanting cultivation was determined to be over 50 hills/3.3 m2. In addition, these results suggest that LT varieties should be avoided, since these showed large decreases in growth and yield with decreasing planting density.

Analytical Studies on Yield and Yield Components in Barley (대맥의 수량 및 수량구성요소에 관한 해석적 연구)

  • Chung-Yun Park
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • 제18권
    • /
    • pp.88-123
    • /
    • 1975
  • To obtain useful fundamental informations for improving cultural practices of barley, an investigation was made on the influences of different fertilizer level and seeding rate as well as seeding date on yield and yield components and their balancing procedure using barley variety Suwon # 18, and at the same time, 8 varieties including Suwon # 18 were also tested to clarify the varietal responses in terms of their yield and yield components under different seeding date at Crop Experiment Station, Suwon, during the period of 1969 and 1970. The results obtained were summarized as follows; 1. Days to emergence of barley variety Suwon # 18 at Suwon, took 8 to 19 days in accordance with given different seeding date (from Sept. 21 to Oct. 31). Earlier emergence was observed by early seeding and most of the seeds were emerged at 15$0^{\circ}C$ cumulated soil temperature at 5cm depth from surface under the favorable condition. 2. Degree of cold injury in different seeding date was seemed to be affected by the growth rate of seedlings and climatic condition during the wintering period. Over growth and number of leaves less than 5 to 6 on the main stem before wintering were brought in severe cold damage during the wintering period. 3. Even though the number of leaves on the main stem were variable from 11 to 16 depending upon the seeding date. this differences were occurred before wintering and less variation was observed after wintering. Particularly, differences of the number of main stem leaves from September 21 to October 11 seeding date were occurred due to the differences of number of main stem leaves before wintering. 4. Dry matter accumulation before wintering was high in early seeded plot and gradually decreased in accordance with delayed seeding date and less different in dry matter weight was observed after wintering. However, the increment rate of this dry matter was high from regrowth to heading time and became low during the ripening period. 5. Number of tillers per $\m^2$ was higher in early seeding than late one and dense planting was higher in the number of tillers than sparse planting. Number of tillers per plant was lower in number and variation in dense planting, and reverse tendency was observed in sparse planting. By increasing seedling rate in early seeding date the number of tiller per plant was remarkably decreased, but the seeding rate didn't affect the individual tillering capacity in the late seeding date. 6. Seedlings were from early planting reached maximum tillering stage earlier than those from the late planting and no remarkable changes was observed due to increased seeding rate. However. increased seeding rate tends to make it earlier the maximum tillering stage early. 7. Stage of maximum tillering was coincided with stage of 4-5 main stem leaves regardless the seeding date. 8. Number of heads per $\m^2$ was increased with increased seeding rate but considerable year variation in number of heads was observed by increased fertilizer level. Therefore, it was clear that there is no difficulties in increasing number of heads per $\m^2$ through increasing both fertilizer level and seeding rate. This type of tendency was more remarkable at optimum seeding time. In the other hand, seeding at optimum time is more important than increasing seeding rate, but increasing seeding rate was more effective in late seeding for obtaining desirable number of heads per $\m^2$. 9. Number of heads per $\m^2$ was decreased generally in all varieties tested in late seeding, but the degree of decrease by late seeding was lower in Suwon # 18. Yuegi, Hangmi and Buheung compared with Suwon # 4, Suwon # 6, Chilbo and Yungwolyukak. 10. Highly significant positive correlations were obtained between number of head and tillers per $\m^2$ from heading date in September 21 seeding, from before-wintering in October 1 seeding and in all growth period from October 11 to October 31 seeding. However, relatively low correlation coefficient was estimated between number of heads and tillers counted around late March to early April in any seeding date. 11. Valid tiller ratio varied from 33% to 76% and highest yield was obtained when valid tiller ratio was about 50%. Therefore, variation of valid tiller ratio was greater due to seeding date differences than due to seeding rate. Early seeding decreased the valid tiller ratio and gradually increased by delaying seeding date but decreased by increasing seeding rate. Among the varieties tested Suwon # 18, Hangmi, Yuegi as well as Buheung should be high valid tiller ratio not only in late seeding but also in early seeding. In contrast to this phenomena, Chilbo, Suwon # 4, Suwon # 6 and Yungwolyukak expressed low valid tiller ratio in general, and also exhibited the same tendency in late seeding date. 12. Number of grains per spike was increased by increasing fertilizer level and decreased by increasing seeding rate. Among the seeding date tested. October 21 (1969) and October 11 (1970) showed lowest number of grains per spike which was increased in both early seeding and late seeding date. There were no definite tendencies observed along with seeding date differences in respective varieties tested. 13. Variation of 1000 grain weight due to fertilizer level applied, seeding date and seeding rate was not so high as number of grains per spike and number of heads per $\m^2$, but exhibited high year variation. Increased seeding rate decreased the 1000 grain weight. Among the varieties tested Chilbo and Buheung expressed heavy grain weight, while Suwon # 18, Hangmi and Yuegi showed comparatively light grain weight. 14. Optimum seeding date in Suwon area was around October 1 to October 11. Yield was generally increased by increasing fertilizer level. Yield decrease due to early seeding was compensated in certain extent by increased fertilizer application. 15. Yield variations due to seeding rate differences were almost negligible compare to the variations due to fertilizer level and seeding date. In either early seeding or law fertilizer level yield variation due to seeding rate was not so remarkable. Increment of fertilizer application was more effective for yield increase especially at increased seeding rate. And also increased seeding rate fairly compensated the decrease of yield in late seeding date. 16. Optimum seeding rate was considered to be around 18-26 liters per 10a at N-P-K=10.5-6-6 kg/10a fertilizer level considering yield stabilization. 17. Varietal differences in optimum seeding date was quite remarkable Suwon # 6, Suwon # 4. Buheung noted high yield at early seeding and Suwon # 18, Yuegi and Hangmi yielded higher in seeding date of October 10. However, Buheung showed late seeding adaptability. 18. Highly significant positive correlations were observed between yield and yield components in all treatments. However, this correlation coefficient was increased positively by increased fertilizer level and decreased by increased seeding rate. Significant negative correlation coefficients were estimated between yield and number of grains per spike, since increased number of heads per m2 at the same level of fertilizer tends to decrease the number of grains per spike. Comparatively low correlation coefficients were estimated between 1000 grain weight and yield. 19. No significant relations in terms of correlation coefficients was observed between number of heads per $\m^2$ and 1000 grain weight or number of grains per head.

  • PDF