• Title/Summary/Keyword: Light scattering coefficient

Search Result 76, Processing Time 0.024 seconds

Measuring the Light Dosimetry Within Biological Tissue Using Monte Carlo Simulation (Monte Csrlo 시뮬레이션을 이용한 생체조직내의 광선량 측정)

  • 임현수;구철희
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.2
    • /
    • pp.199-204
    • /
    • 1999
  • As the correct measuring of the light dosimetry in biological tissues give the important affection to the effect of PDT treatment we used Monte Carlo simulation to measure the light dosimetry on this study. The parameters using in experiments are the optical properties of the real biological tissue, and we used Henyey-Greenstein phase function among the phase functions. As we results, we displayed the result the change of Fluence rate and the difference against the previous theory was at least 0.35%. Biological tissues using in experiment were Human tissue, pig tissue, rat liver tissue and rabbit muscle tissue. The most of biological tissue have big scattering coefficient in visible wavelength which influences penetration depth. The penetration depth of human tissue in visible region is 1.5~2cm. We showed that it is possible to measure fluence rate and penetration depth within the biological tissues by Monte Carlo simulation very well.

  • PDF

Physical, Chemical and Optical Properties of Fine Aerosol as a Function of Relative Humidity at Gosan, Korea during ABC-EAREX 2005

  • Moon, Kwang-Joo;Han, Jin-Seok;Cho, Seog-Yeon
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.3
    • /
    • pp.129-138
    • /
    • 2013
  • The water uptake by fine aerosol in the atmosphere has been investigated at Gosan, Korea during ABC-EAREX 2005. The concentration of inorganic ion and carbon components, size distribution, and light scattering coefficients in normal and dry conditions were simultaneously measured for $PM_{2.5}$ by using a parallel integrated monitoring system. The result of this study shows that ambient fine particles collected at Gosan were dominated by water-soluble ionic species (35%) and carbonaceous materials (18%). In addition, it shows the large growth of aerosol in the droplet mode when RH is higher than 70%. Size distribution of the particulate surface area in a wider size range ($0.07-17{\mu}m$) shows that the elevation of RH make ambient aerosol grow to be the droplet mode one around $0.6{\mu}m$ or the coarse mode one, larger than $2.5{\mu}m$. Hygroscopic factor data calculated from the ratio of aerosol scattering coefficients at a given ambient RH and a reference RH (25%) show that water uptake began at the intermediate RH range, from 40% to 60%, with the average hygroscopic factor of 1.10 for 40% RH, 1.11 for 50% RH, and 1.17 for 60% RH, respectively. Finally, average chemical composition and the corresponding growth curves were analyzed in order to investigate the relationship between carbonaceous material fraction and hygroscopicity. As a result, the aerosol growth curve shows that inorganic salts such as sulphate and nitrate as well as carbonaceous materials including OC largely contribute to the aerosol water uptake.

Effect of raw materials of the papermaking and physical treatment on the pore structure and properties of the paper (주요제지원료의 특성 및 고해가 종이의 pore structure 및 물성에 미치는 영향)

  • Nam, Ki-Young;Chung, Soon-Ki;Won, Jong-Myoung
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2007.11a
    • /
    • pp.127-134
    • /
    • 2007
  • Paper is composed network of fibers. Since paper is plain, most cases paper is considered two-dimensional. But network of fibers creates a network of pores, and pores between fibers are most important part of the paper structure. So we have to make an approach to the paper by three-dimensionally. Pore structure in the Z-direction of the paper can affect directly not only basic properties od the paper such as density, porosity, opacity and strength but also coverage of the coating colors during coatong and printing properties. We studied effect of raw materials of the papermaking and physical treatment on the pore structure and properties of the paper.

  • PDF

Comparison of pore analysis techniques of the paper (종이의 Pore 특성 측정 기법의 비교)

  • Nam, Ki-Young;Chung, Sun-Ki;Won, Jong-Myoung
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2007.11a
    • /
    • pp.179-186
    • /
    • 2007
  • The best way to understand paper properties is to study paper structure. Paper is composed solid materials (pulp and other additives) and air three-dimensionally, it's important to understand pore structure of the paper. There are several method to analysis pore structure of the paper. Mercury intrusion technique is frequently used for the characterization of the porous paper, giving access to parameters such as pore size and pore distribution. But some researchers indicated mercury intrusion distorts the structure due to application of high pressure. So this paper suggest new analysis technique to pore structure of the paper. New pore analysis technique with SEM does not require high pressure, gives good resolution and measures pore structure.

  • PDF

A Study on the Surface Polishing of Diamond Thin Films by Thermal Diffusion (열확산에 의한 다이아몬드 박막의 표면연마에 관한 연구)

  • Bae, Mun Ki;Kim, Tae Gyu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.2
    • /
    • pp.75-80
    • /
    • 2021
  • The crystal grains of polycrystalline diamond vary depending on deposition conditions and growth thickness. The diamond thin film deposited by the CVD method has a very rough growth surface. On average, the surface roughness of a diamond thin film deposited by CVD is in the range of 1-100 um. However, the high surface roughness of diamond is unsuitable for application in industrial applications, so the surface roughness must be lowered. As the surface roughness decreases, the scattering of incident light is reduced, the heat conduction is improved, the mechanical surface friction coefficient can be lowered, and the transmittance can also be improved. In addition, diamond-coated cutting tools have the advantage of enabling ultra-precise machining. In this study, the surface roughness of diamond was improved by thermal diffusion reaction between diamond carbon atoms and ferrous metals at high temperature for diamond thin films deposited by MPCVD.

Aerosol Light Absorption and Scattering Coefficient Measurements with a Photoacoustic and Nephelometric Spectrometer (광음향 및 네펠로미터 방식을 이용한 에어로졸 흡수 및 산란계수 측정)

  • Kim, Ji-Hyoung;Kim, Sang-Woo;Heo, Junghwa;Nam, Jihyun;Kim, Man-Hae;Yu, Yung-Suk;Lim, Han-Chul;Lee, Chulkyu;Heo, Bok-Haeng;Yoon, Soon-Chang
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.185-191
    • /
    • 2015
  • Ambient measurements of aerosol light absorption (${\sigma}_a$) and scattering coefficients (${\sigma}_s$) were done at Gosan climate observatory during summer 2008 using a 3-wavelength photoacoustic soot spectrometer (PASS). PASS was deployed photoacoustic method for light absorption and integrated nephelometry for light scattering measurements. The ${\sigma}_a$ and ${\sigma}_s$ from PASS were compared with those from co-located aethalometer and nephelometer measurements. The aethalometer measurements of ${\sigma}_a$ correlated reasonably well with photoacoustic measurements, but the slope of the linear fitting line indicated the PASS measurement values of ${\sigma}_a$ were larger by a factor of 1.53. The nephelometer measurement values of ${\sigma}_s$ correlated very well with PASS measurements of ${\sigma}_s$, with a slope of 1.12 and a small offset. Comparing to the aethalometer measurements, the photoacoustic measurements of ${\sigma}_a$ didn't exhibit a significant (i.e., the ratio between aethalometer and PASS increased) change with increasing relative humidity (RH). The ratio of ${\sigma}_s$ between nephelometer and PASS increased with increasing RH, especially when the RH increased beyond 80%. This apparent increase in ${\sigma}_s$ with RH may be due to the contribution of hygroscopic growth of aerosols.

Implementation of Multi-channel Concurrent Detection Homodyne Frequency-domain Diffuse Optical Imaging System (다채널 동시측정을 적용한 호모다인 주파수영역 확산 광 이미징 시스템의 구현)

  • Jun, Young Sik;Baek, Woon Sik
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.1
    • /
    • pp.23-31
    • /
    • 2012
  • In this paper, we developed a frequency-domain diffuse optical imaging (DOI) system for imaging non-invasively using near-infrared (NIR) light sources and detectors. 70-MHz modulation and a homodyne scheme were adopted. By calibration of the coupling coefficients, concurrent detection measurements by 4 detector sets were optimized. We presented experimental reconstruction images of absorption and scattering coefficients in a liquid phantom, located an anomaly in the phantom and determined its optical properties. The images by the multi-channel concurrent detection were improved over the results by single-channel sequential detection. Tomographic slices of absorption and scattering coefficients in the phantom with an anomaly were also presented.

A Study on the Light Extinction Characteristics in the Main Channel of Nakdong River by Monitoring Underwater Irradiance in Summer (수중 광량 모니터링을 통한 하절기 낙동강 본류 소광 특성 연구)

  • Kang, Mi-Ri;Min, Joong-Hyuk;Choi, Jungkyu;Park, Suyoung;Shin, Changmin;Kong, Dongsoo;Kim, Han Soon
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.6
    • /
    • pp.632-641
    • /
    • 2018
  • Algal dynamics is controlled by multiple environmental factors such as flow dynamics, water temperature, trophic level, and irradiance. Underwater irradiance penetrating from the atmosphere is exponentially decreased in water column due to absorption and scattering by water molecule and suspended particles including phytoplankton. As the exponential decrease in underwater irradiance affects algal photosynthesis, regulating their spatial distribution, it is critical to understand the light extinction characteristics to find out the mechanisms of algal dynamics more systematically. Despite the significance, the recent data have been rarely reported in the main stream areas of large rivers, Korea. In this study, the euphotic depths and light extinction coefficients were determined by monitoring the vertical variation of underwater irradiance and water quality in the main channel of Nakdong River near Dodong Seowon once a week during summer of 2016. The average values of euphotic depth and light extinction coefficient were 4.0 m and $1.3m^{-1}$, respectively. The degree of light extinction increased in turbid water due to flooding, causing an approximate 50 % decrease in euphotic depth. Also, the impact was greater than the self-shading effect during the periods of cyanobacterial bloom. The individual light extinction coefficients for background, total suspended solid and algal levels, frequently used in surface water quality modeling, were determined as $0.305m^{-1}$, $0.090m^{-1}/mg{\cdot}L^{-1}$, $0.013m^{-1}/{\mu}g{\cdot}L^{-1}$, respectively. The values estimated in this study were within or close to the ranges reported in literatures.

Effect of Recycling on the Papermaking Properties of Wood Pulp Fibers (펄프섬유(纖維)의 제지특성(製紙特性)에 미치는 회수처리(回收處理)의 영향(影響))

  • Kim, Hyoung-Jin;Jo, Byoung-Muk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.21-38
    • /
    • 1993
  • In order to investigate the influence of recycling, a laboratory method simulating the papermaking process was used for assessing the effects of recycling on fiber properties. Sw-BKP, Hw-BKP and BGP were disintegrated and beaten to about 42$^{\circ}$SR-44$^{\circ}$SR by a valley beater. After beating, these pulps were dewatered by centrifuge and dried at 90$^{\circ}C$ for 72hrs. This recycling process(sequence of wetting, defiberating, dewatering and drying) was repeated seven times. Physical, mechanical and optical properties of recycled pulps were evaluated by TAPPI Standards. Morphological changes occurred through recycling process was observed by SEM. Sheet density decreased with recycling. The largest drop in density occurred during the first recycling. The porosity values decreased with recycling. Mechanical properties such as tensile, burst strength and folding endurance, decreased with recycling. However tear strength of Sw-BKP and mixtured pulp increased at the first recycling. Optical properties such as brightness, opacity and light scattering coefficient, increased with recycling. However, brightness of mixtured pulp gradually decreased with recycling. Fibrillated outer layer of the fiber was gradually removed from the surface with recycling. As a result of recycling, crinkles on the fiber surface were found to be more folded.

  • PDF

Self-Diffusion Coefficients of Colloidal Association Structures in ADS/OTAC Mixed Aqueous Solutions by Pulsed (Field) Gradient Spin Echo-NMR (Pulsed (Field) Gradient Spin Echo (PGSE) NMR에 의한 ADS/OTAC 혼합 수용액에서의 콜로이드 회합체의 자가 확산 계수)

  • Kim, Hong-Un;Lim, Kyung-Hee;Kim, Eun-Hee;Cheong, Chae-Joon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.339-348
    • /
    • 2002
  • Self-diffusion coefficients of colloidal ass9Ciation structures in the aqueous solutions of anionic ammonium dodecyl sulfate (ADS) and cationic octadecyltrimethylammonium chloride (OTAC) surfactants were measured by pulsed-gradient spin echo NMR. The results were interpreted on the basis of the ADS/OTAC/water phase diagram. Crossing the phase boundaries, significant changes in self diffusion coefficients were observed and well correlated to the phase diagram. For the micelles their apparent radii were obtained from Stokes-Einstein equation. Their values were 15 for the ADS micelles and 54 ${{\AA}}$ for the OTAC micelles, respectively. For vesicles which were formed spontaneously at different relative amounts of the surfactants and total surfactant concentrations, the radius was measured as 50 to 200 nm. This result is in fair agreement with those by TEM and light scattering.