• Title/Summary/Keyword: Light materials

Search Result 4,689, Processing Time 0.034 seconds

Synthesis of Nanosized SnS-TiO2 Photocatalysts with Excellent Degradation Effect of TBA under Visible Light Irradiation

  • Meng, Ze-Da;Zhu, Lei;Ullah, Kefayat;Ye, Shu;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.25 no.9
    • /
    • pp.455-461
    • /
    • 2015
  • SnS-$TiO_2$ nanocomposites are synthesized using simple, cheap, and less toxic $SnCl_2$ as the tin (II) precursor. The prepared nanoparticles are characterized using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV-Vis diffuse reflectance spectra (DRS). The XRD and TEM results indicate that the prepared product has SnS nanoparticles and a grain diameter of 30 nm. The DRS demonstrate that SnS-$TiO_2$ possesses the absorption profile across the entire visible light region. The generation of reactive oxygen species is detected through the oxidation reaction from 1,5-diphenyl carbazide (DPCI) to 1,5-diphenyl carbazone (DPCO). It is found that the photocurrent density and photocatalytic effect increase with the modified SnS. Excellent catalytic degradation of Texbrite BA-L (TBA) solution is observed using the SnS-$TiO_2$ composites under visible light irradiation. It is proposed that both the strong visible light absorption and the multiple exciton excitations contribute to the high visible light photocatalytic activity.

An Analysis of Application of Transparent Materials in Interior Space (투명성 효과를 위한 재료의 특성 및 적용 방법)

  • Chung, Phil-Young
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.7 no.2
    • /
    • pp.19-24
    • /
    • 2007
  • This study attempts to examine and to analyze the characteristics of transparent materials and its methods to apply in space. the ability to see through a physical element, whether it is clear glass, sandblasted acrylic, or a delicate fabric, can have a dramatic and sensory effect on the overall perception of a space. The various range of Transparent materials and product in glass, plastic, fabric, and grid now gives us the potential to maximize the flow of light in our enclosed space. This research will explore how transparent, translucent, and semi-opaque elements can be used within the interior with full range of see-through materials. The transparent materials can be divided in two level - as structural elements and as stylish accessories. A glass partition or floor, metal mesh stairs can create divisions or link one space to another while maintaining effective levels of natural light. there is also various level of products from glass chair to basin. With the enthusiasm for using transparent materials, transparent materials will be more decorative and powerful application while still maximize the highest possible flow of light.

  • PDF

Dependence of Light-Emitting Characteristics of Blue Phosphorescent Organic Light-Emitting Diodes on Electron Injection and Transport Materials

  • Lee, Jeong-Ik;Lee, Jonghee;Lee, Joo-Won;Cho, Doo-Hee;Shin, Jin-Wook;Han, Jun-Han;Chu, Hye Yong
    • ETRI Journal
    • /
    • v.34 no.5
    • /
    • pp.690-695
    • /
    • 2012
  • We investigate the light-emitting performances of blue phosphorescent organic light-emitting diodes (PHOLEDs) with three different electron injection and transport materials, that is, bathocuproine(2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline) (Bphen), 1,3,5-tri(m-pyrid-3-yl-phenyl)benzene (Tm3PyPB), and 2,6-bis(3-(carbazol-9-yl)phenyl)pyridine (26DCzPPy), which are partially doped with cesium metal. We find that the device characteristics are very dependent on the nature of the introduced electron injection layer (EIL) and electron transporting layer (ETL). When the appropriate EIL and ETL are combined, the peak external quantum efficiency and peak power efficiency improve up to 20.7% and 45.6 lm/W, respectively. Moreover, this blue PHOLED even maintains high external quantum efficiency of 19.6% and 16.9% at a luminance of $1,000cd/m^2$ and $10,000cd/m^2$, respectively.

Enhancement of Light Extraction Efficiency of GaN Light Emitting Diodes Using Nanoscale Surface Corrugation (나노크기 표면 요철을 이용한 GaN LED의 광추출효율 향상)

  • Jung, Jae-Woo;Kim, Sarah;Jeong, Jun Ho;Jeong, Jong-Ryul
    • Korean Journal of Materials Research
    • /
    • v.22 no.11
    • /
    • pp.636-641
    • /
    • 2012
  • In this study, we have investigated highly efficient nanoscale surface corrugated light emitting diodes (LEDs) for the enhancement of light extraction efficiency (LEE) of nitride semiconductor LEDs. Nanoscale indium tin oxide (ITO) surface corrugations are fabricated by using the conformal nanoimprint technique; it was possible to observe an enhancement of LEE for the ITO surface corrugated LEDs. By incorporating this novel method, we determined that the total output power of the surface corrugated LEDs were enhanced by 45.6% for patterned sapphire substrate LEDs and by 41.9% for flat c-plane substrate LEDs. The enhancement of LEE through nanoscale surface corrugations was studied using 3-dimensional Finite Different Time Domain (FDTD) calculation. From the FDTD calculations, we were able to separate the light extraction from the top and bottom sides of device. This process revealed that light extraction from the top and bottom sides of a device strongly depends on the substrate and the surface corrugation. We found that enhanced LEE could be understood through the mechanism of enhanced light transmission due to refractive index matching and the increase of light scattering from the corrugated surface. LEE calculations for the encapsulated LEDs devices also revealed that low LEE enhancement is expected after encapsulation due to the reduction of the refractive index contrast.

A Study on the Reduction of VOCs Generated from Vehicle Interior Parts and Materials Using Visible-light Responsive Photocatalyst (가시광촉매를 이용한 자동차 내장재로부터 발생하는 VOCs의 저감연구)

  • Choi, Sei-Young;Yang, Seung-Gi
    • Elastomers and Composites
    • /
    • v.48 no.3
    • /
    • pp.209-215
    • /
    • 2013
  • On this study, visible-light responsive photocatalyst prepared by sol-gel method was evaluated the effect of the reduction of volatile organic compounds (VOCs) occurred in vehicle interior and its property was examined. According to UV/visible result, visible-light responsive photocatalyst was found that the UV-visible peak is red shift at 420nm, is sensitive in the visible light region. With vehicle interior parts and materials coated visible-light responsive photocatalyst, VOCs was measured by GC/MS. Measuring the VOCs generated from vehicle interior parts and materials, the reduction of VOCs was confirmed.

Effective Light Management of Three-Dimensionally Patterned Transparent Conductive Oxide Layers

  • Kim, Joon-Dong;Kim, Min-Geon;Kim, Hyun-Yub;Yi, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.85-85
    • /
    • 2012
  • For effective light harvesting, a design weighting should be implemented in a front geometry, in which the incident light transmits from a surface into a light-active layer. We designed a three-dimensionally patterned transparent conductor layer for effective light management. A transparent conductive oxide (TCO) film was formed as three-dimensional structures. This efficiently drives the incident light at the front surface into a Si absorber to yield a reduction in reflection and an enhancement of current. This indicates that an optimum architecture for a front TCO surface will provide an effective way for light management in solar cells.

  • PDF

Simplified Bilayer White Phosphorescent Organic Light-Emitting Diodes

  • Lee, Jonghee;Sung, Woo Jin;Joo, Chul Woong;Cho, Hyunsu;Cho, Namsung;Lee, Ga-Won;Hwang, Do-Hoon;Lee, Jeong-Ik
    • ETRI Journal
    • /
    • v.38 no.2
    • /
    • pp.260-264
    • /
    • 2016
  • We report on highly efficient blue, orange, and white phosphorescent organic light-emitting diodes consisting only two organic layers. Hole transporting 4, 4,' 4"-tris (N-carbazolyl)triphenylamine (TcTa) and electron transporting 2-(diphenylphosphoryl) spirofluorene (SPPO1) are used as an emitting host for orange light-emitting bis(3-benzothiazol-2-yl-9-ethyl-9H-carbazolato) (acetoacetonate) iridium ((btc)2(acac)Ir) and blue light-emitting iridium(III)bis(4,6-difluorophenyl-pyridinato-N,C2') picolinate (FIrpic) dopant, respectively. Combining these two orange and blue light-emitting layers, we successfully demonstrate highly efficient white PHOLEDs while maintaining Commission internationale de l'eclairage coordinates of (x = 0.373, y = 0.443). Accordingly, we achieve a maximum external quantum, current, and power efficiencies of 12.9%, 30.3 cd/A, and 30.0 lm/W without out-coupling enhancement.

Comparison of light transmittance in different thicknesses of zirconia under various light curing units

  • Cekic-Nagas, Isil;Egilmez, Ferhan;Ergun, Gulfem
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.2
    • /
    • pp.93-96
    • /
    • 2012
  • PURPOSE. The objective of this study was to compare the light transmittance of zirconia in different thicknesses using various light curing units. MATERIALS AND METHODS. A total of 21 disc-shaped zirconia specimens (5 mm in diameter) in different thicknesses (0.3, 0.5 and 0.8 mm) were prepared. The light transmittance of the specimens under three different light-curing units (quartz tungsten halogen, light-emitting diodes and plasma arc) was compared by using a hand-held radiometer. Statistical significance was determined using two-way ANOVA (${\alpha}$=.05). RESULTS. ANOVA revealed that thickness of zirconia and light curing unit had significant effects on light transmittance ($P$ <.001). CONCLUSION. Greater thickness of zirconia results in lower light transmittance. Light-emitting diodes light-curing units might be considered as effective as Plasma arc light-curing units or more effective than Quartz-tungsten-halogen light-curing units for polymerization of the resin-based materials.

Direct printing process based on nanoimprint lithography to enhance the light extraction efficiency of AlGaInP based red LEDs

  • Cho, Joong-Yeon;Kim, Jin-Seung;Kim, Gyu-Tae;Lee, Heon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.171-171
    • /
    • 2012
  • In this study, we fabricated the high-brightness AlGaInP-based red light emitting diodes (LED)s using by direct printing technique and inductive coupled plasma (ICP) reactive ion etching (RIE). In general, surface roughening was fabricated by wet etching process to improve the light extraction efficiency of AlGaInP-based red LED. However, a structure of the surface roughening, which was fabricated by wet etching, was tiled cone-shape after wet etching process due to crystal structure of AlGaInP materials, which was used as top-layer of red LED. This tilted cone-shape of surface roughening can improve the light extraction of LED, but it caused a loss of the light extraction efficiency of LED. So, in this study, we fabricated perfectly cone shaped pattern using direct printing and dry etching process to maximize the light extraction efficiency of LED. Both submicron pattern and micron pattern was formed on the surface of red LED to compare the enhancement effect of light extraction efficiency of LEDs according to the diameter of sapphire patterns.After patterning process using direct printing and ICP-RIE proceeded on the red LED, light output was enhanced up to 10 % than that of red LED with wet etched structure. This enhancement of light extraction of red LED was maintained after packaging process. And as a result of analyze of current-voltage characteristic, there is no electrical degradation of LED.

  • PDF