• Title/Summary/Keyword: Light fluorescence

Search Result 554, Processing Time 0.025 seconds

A New-Generation Fluorescent-Based Metal Sensor - iLOV Protein

  • Ravikumar, Yuvaraj;Nadarajan, Saravanan Prabhu;Lee, Chong-Soon;Rhee, Jin-Kyu;Yun, Hyungdon
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.4
    • /
    • pp.503-510
    • /
    • 2015
  • The iLOV protein belongs to a family of blue-light photoreceptor proteins containing a light-oxygen-voltage sensing domain with a noncovalently bound flavin mononucleotide (FMN) as its chromophore. Owing to advantages such as its small size, oxygen-independent nature, and pH stability, iLOV is an ideal candidate over other reporter fluorescent proteins such as GFP and DsRed. Here, for the first time, we describe the feasibility of applying LOV domain-based fluorescent iLOV as a metal sensor by measuring the fluorescence quenching of a protein with respect to the concentration of metal ions. In the present study, we demonstrated the inherent copper sensing property of the iLOV protein and identified the possible amino acids responsible for metal binding. The fluorescence quenching upon exposure to Cu2+ was highly sensitive and exhibited reversibility upon the addition of the metal chelator EDTA. The copper binding constant was found to be 4.72 ± 0.84 µM. In addition, Cu2+-bound iLOV showed high fluorescence quenching at near physiological pH. Further computational analysis yielded a better insight into understanding the possible amino acids responsible for Cu2+ binding with the iLOV protein.

Finding Needles in a Haystack with Light: Resolving the Microcircuitry of the Brain with Fluorescence Microscopy

  • Rah, Jong-Cheol;Choi, Joon Ho
    • Molecules and Cells
    • /
    • v.45 no.2
    • /
    • pp.84-92
    • /
    • 2022
  • To understand the microcircuitry of the brain, the anatomical and functional connectivity among neurons must be resolved. One of the technical hurdles to achieving this goal is that the anatomical connections, or synapses, are often smaller than the diffraction limit of light and thus are difficult to resolve by conventional microscopy, while the microcircuitry of the brain is on the scale of 1 mm or larger. To date, the gold standard method for microcircuit reconstruction has been electron microscopy (EM). However, despite its rapid development, EM has clear shortcomings as a method for microcircuit reconstruction. The greatest weakness of this method is arguably its incompatibility with functional and molecular analysis. Fluorescence microscopy, on the other hand, is readily compatible with numerous physiological and molecular analyses. We believe that recent advances in various fluorescence microscopy techniques offer a new possibility for reliable synapse detection in large volumes of neural circuits. In this minireview, we summarize recent advances in fluorescence-based microcircuit reconstruction. In the same vein as these studies, we introduce our recent efforts to analyze the long-range connectivity among brain areas and the subcellular distribution of synapses of interest in relatively large volumes of cortical tissue with array tomography and superresolution microscopy.

Image Analysis for the Simultaneous Measurement of Underwater Flow Velocity and Direction (수중 유속 및 유향의 동시 측정을 위한 이미지 분석 기술에 관한 연구)

  • Dongmin Seo;Sangwoo Oh;Sung-Hoon Byun
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.307-312
    • /
    • 2023
  • To measure the flow velocity and direction in the near field of an unmanned underwater vehicle, an optical measurement unit containing an image sensor and a phosphor-integrated pillar that mimics the neuromasts of a fish was constructed. To analyze pillar movement, which changes with fluid flow, fluorescence image analysis was conducted. To analyze the flow velocity, mean force analysis, which could determine the relationship between the light intensity of a fluorescence image and an external force, and length-force analysis, which could determine the distance between the center points of two fluorescence images, were employed. Additionally, angle analysis that can determine the angles at which pixels of a digital image change was selected to analyze the direction of fluid flow. The flow velocity analysis results showed a high correlation of 0.977 between the external force and the light intensity of the fluorescence image, and in the case of direction analysis, omnidirectional movement could be analyzed. Through this study, we confirmed the effectiveness of optical flow sensors equipped with phosphor-integrated pillars.

The Evaluation of Adaptability of Three Ever-green Perennial Herbaceous South Korea Native Plants under In-door Light Intensities

  • Sang Yeob Lee;Kyungtae Park;Bo Kook Jang;Cheol Hee Lee;Ju Sung Cho
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.67-67
    • /
    • 2020
  • Though there is an on-going need for the diversity of ornamental plants for in-door environment, their growth and stress adaptability in comparatively low light intensity condition require further studies for implementation. Here investigates the growth and chlorophyll fluorescence parameters of Farfugium japonicum (L.) Kitam, Liriope muscari (Decne.) L.H.Bailey and Acorus gramineus Aiton under several light intensities which were based on common in-door environment. The growth measurement of the plants included the quantity, length, width and SPAD value of the leaves. Calculated values of Fm/Fo, Fv/Fm, Pi_Abs, ETo/RC and DIo/RC were used as the parameters of the chlorophyll fluorescence under 10, 50, 100 and 200 PPFD (μmol·m-2·s-1) light intensities. In-door plants group was put in a closed room allowing no other light sources for 10 weeks and the control group was put in glass-greenhouse for the same period. The overall in-door growth of L. muscari was not significantly different in all light intensities compared to the control group and even showed the higher SPAD values. Also, an increasing tendency of Pi_Abs value under 10 to 100 PPFD was observed implying that L.muscari could adapt well to in-door environment. Measurement of A. gramineus growth mostly showed the highest values in the control group especially in the number of the leaves. Nevertheless, chlorophyll fluorescence parameters showed no significant value difference between in-door and the control groups and thus, A. gramineus might have possibility of successful adaptation to in-door environment. F. japonicum showed deficient growth in plant height and leaf length compared to the control but, it seemed to be able to sustain ornamental value under in-door light intensities. Furthermore, Pi_Abs and DIo/RC values were increased under in-door light conditions suggesting potential adaptability of F. japonicum.

  • PDF

A Cyan Fluorescent Protein Gene (cfp)-Transgenic Marine Medaka Oryzias dancena with Potential Ornamental Applications

  • Vu, Nguyen Thanh;Cho, Young Sun;Lee, Sang Yoon;Kim, Dong Soo;Nam, Yoon Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.17 no.4
    • /
    • pp.479-486
    • /
    • 2014
  • To evaluate their potential utility as an ornamental organism, novel transgenic marine medaka Oryzias dancena strains with a highly vivid fluorescent phenotype were established through transgenesis of a cyan fluorescent protein gene (cfp) driven by the endogenous fast skeletal myosin light chain 2 gene (mlc2f) promoter. The transgenic marine medaka strains possessed multiple copies of transgene integrants and passed their fluorescent transgenes successfully to subsequent generations. Transgenic expression in skeletal muscles at both the mRNA and phenotypic levels was, overall, dependent upon transgene copy numbers. In the external phenotype, an authentic fluorescent color was dominant in the skeletal muscles of the transgenic fish and clearly visible to the unaided eye. The phenotypic fluorescent color presented differentially in response to different light-irradiation sources; the transgenics displayed a yellow-green color under normal daylight or white room light conditions, a strong green-glowing fluorescence under ultraviolet light, and a cyan-like fluorescence under blue light from a light-emitting diode.

LIGHT-DEPENDENT CHANGES OF CHLOROPHYLL FLUORESCENCE AND XANTHOPHYLL CYCLE PIGMENTS IN MAIZE LEAVES DURING DESICCATION

  • Xu, Chang-Cheng;Lee, Choon-Hwan;Zou, Qi
    • Journal of Photoscience
    • /
    • v.5 no.1
    • /
    • pp.17-22
    • /
    • 1998
  • Changes of chlorophyll fluorescence and xanthophyll cycle pigment contents in maize leaves were investigated dunng desiccation in darkness or in the light. In darkness, a drastic dehydration of detached maize leaves down to 50% relative water content (RWC) affected photochemical efficiency of photosystem II (Fv/Fm) and pht)tochemical quenching (qP) only slightly. In contrast, desiccation in the light with a moderate intensity led to a pronounced reduction in Fv/Fm with a Fo quenching when RWC was greater than 70%. This reduction in Fv/Fm could be recovered in darkness under hutrod condition. In leaves with RWC below 70%, significant reduction in Fv/Fm was accompanied by an increase of Fo, which could not be reversed within 5 h in darkness under humid condition. The nonphotochemical quenching increased during desiccation in the light with a concomitant rise in zeaxanthin at the expense of violaxanthin. Pretreatment with dithiothreitol (DTT), an inhibitor of zeaxanthin synthesis, inhibited the development of nonphotochemical quenching and prevented the xanthophyll interconversion during desiccation in the light. These results suggest that even light with a moderate intensity becomes excessive under dehydration and zeaxanthin-associated photoprotection of photosynthetic apparatus against photodamage is involved, but the protection is not complete against severe desiccation.

  • PDF

PROTEIN CONFORMATIONS OF OCTOPUS RHODOPSIN AND ITS DEPROTONATED PHOTOCYCLE INTERMEDIATE MONITORED BY ABSORPTION AND PROTEIN FLUORESCENCE

  • Jang, Du-Jeon;Lee, SunBae
    • Journal of Photoscience
    • /
    • v.2 no.1
    • /
    • pp.19-25
    • /
    • 1995
  • Picosecond time-resolved and static protein fluorescence spectra and absorption spectra of octopus rhodopsin, a photorecepting protein, are measured and compared with those of bacteriorhodopsin, a photon-induced proton pumping protein, to understand the protein conformations and functions of octopus rhodopsin and its deprotonated photocycle intermediate. The bluer and weaker absorption of retinal indicates that octopus rhodopsin is better in thermal noise suppression but less efficient in light harvesting than bacteriorhodopsin. The protein fluorescence of octopus rhodopsin shows the characteristic of Trp only and the uantum efficiency and lifetime variations may result primarily from variations in the coupling strength with the retinal. The stronger intensity by four times and larger red shift by 12 nm of fluorescence suggest that octopus rhodopsin has more open and looser structure compared with bacteriorhodopsin. Fluorescence decay profiles reveal two decay components of 300 ps (60%) and 2 ns (40%). The deprotonation of protonated Schiff's base increases the shorter decay time to 500 ps and enhances the fluorescence intensity by 20%. The fluorescence and its decay time from Trp residues near retinal are influenced more by the deprotonation. The increase of fluorescence intimates that protein structure becomes loosened and relaxed further by the deprotonation of protonated Schiff's base. The driving force of sequential changes initiated by absorption of a photon is too exhausted after the deprotonation to return the intermediate to the ground state of the begun rhodopsin form.

  • PDF

Evaluation of Remineralization Effects on Enamel Demineralization by Anti-cariogenic Agents using Quantitative Light-induced Fluorescence-digital (QLF-D) in vitro (유치 및 영구치에서 QLF를 이용한 항우식 제품의 재광화 효과 비교)

  • Lee, Kkotnim;Kim, Miae;Hwang, Inkyung;Park, Jihyun;Mah, Yonjoo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.43 no.4
    • /
    • pp.391-400
    • /
    • 2016
  • The purpose of this study was to evaluate the difference of remineralization effects of various anti-cariogenic toothpastes on artificial carious lesions in primary and permanent teeth using quantitative light-induced fluorescence-digital (QLF-D) system. Sound human primary (n = 48) and permanent teeth (n = 48) were randomly divided into following groups : control group (Group 1), fluoride toothpaste (Group 2), functionalized tricalcium phosphate (fTCP) + fluoride toothpaste (Group 3), and casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) toothpaste (Group 4). Specimens were prepared by exposure in a demineralizing solution and then treated using the different toothpastes twice daily during 14 days. All specimens were analyzed with the QLF-D system. QLF data analysis indicated three different toothpastes showed significant remineralizing effects compared to Group 1 in both primary and permanent teeth. Also, the remineralizing effects in Group 3 and 4 were significantly higher than in Group 2. This study suggested that the toothpastes containing fTCP + fluoride and CPP-ACP have the significant anti-cariogenic effects on enamel demineralization in both primary and permanent teeth, and QLF-D is an useful device to assess the incipient carious lesion and remineralization effects of the anti-cariogenic materials quantitatively. Therefore, clinicians can consider the QLF-D system for the evaluation of demineralization and remineralization in primary and permanent teeth.

Research Trends of Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes (OLED용 지연형광 소재의 연구 동향)

  • Lee, Ju Young
    • Ceramist
    • /
    • v.22 no.3
    • /
    • pp.218-229
    • /
    • 2019
  • The development of highly efficient thermally activated delayed fluorescence (TADF) materials is an active area of recent research in organic light emitting diodes (OLEDs) since the first report by Chihaya Adachi in 2011. Traditional fluorescent materials can harvest only singlet excitons, leading to the theoretically highest external quantum efficiency (EQE) of 5% with considering about 20% light out-coupling efficiency in the device. On the other hand, TADF materials can harvest both singlet and triplet excitons through reverse intersystem crossing (RISC) from triplet to singlet excited states. It could provide 100% internal quantum efficiencies (IQE), resulting in comparable high EQE to traditional rare-metal complexes (phosphorescent materials). Thanks to a lot of efforts in this field, many highly efficient TADF materials have been developed. This review focused on recent molecular design concept and optoelectronic properties of TADF materials for high efficiency and long lifetime OLED application.

Effect of light and sediment grain size on the vertical migration of benthic diatoms

  • Du, Guo Ying;Oak, Jung-Hyun;Li, Hongbo;Chung, Ik-Kyo
    • ALGAE
    • /
    • v.25 no.3
    • /
    • pp.133-140
    • /
    • 2010
  • Using chlorophyll fluorescence, the vertical migration of benthic diatoms responding to light intensity and affected by sediment grain size was studied. Minimal fluorescence ($F_o$) of surface sediment was measured by imaging pulse amplitude modulated (Imaging-PAM) fluorometer, and used to monitor diatom biomass variation in surface sediments. The test diatoms, Amphora coffeaeformis (C. Agardh) K$\ddot{u}$tzing and Cylindrotheca closterium (Ehrenberg) Reimann & Lewin, migrated to the sediment surface under irradiance from 50 to 500 ${\mu}mol$ photons $m^{-2}s^{-1}$. However, the diatoms exhibited no evident increase of surface biomass under dark conditions, and even showed slightly decrease of surface biomass under irradiances over 1,000 ${\mu}mol$ photons $m^{-2}s^{-1}$. The light intensity inducing the maximum surface migration of A. coffeaeformis was 100 ${\mu}mol$ photons $m^{-2}s^{-1}$, while the light intensity producing the same effect for C. closterium was 250 ${\mu}mol$ photons $m^{-2}s^{-1}$. C. closterium showed higher motility than A. coffeaeformis. Faster diatom surfacing was observed in larger grain size sediments (125-335 ${\mu}m$) than smaller ones (63-125 ${\mu}m$). This study confirmed the significant influence of light as a main triggering factor behind migration, indicated the distinct effect of different sediment grain size, and highlighted the species-specific migratory ability.