• Title/Summary/Keyword: Light fiber

Search Result 1,185, Processing Time 0.042 seconds

The Growth Effects on Interior Landscape Plants by Optical Fiber Lighting System (광섬유 조명체계가 실내조경식물의 생육에 미치는 효과)

  • 최경옥;방광자
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.29 no.6
    • /
    • pp.92-100
    • /
    • 2002
  • This study was carried out to obtain fundamental information on the growth response of interior landscape plants under fluorescent light, sunlight and optical fiber lighting indoors. Saintpaulia ‘Delaware’, ‘Kalanchoe blossfeldiana, Anthurium scherzerianum and Ardisia crenata were examined using light intensity of 5001ux and 1,0001ux of fluorescent light, sunlight and optical fiber lighting in an interior environment. Results of experiments are as follows; 1) Plant growth status showed the best results under optical fiber lighting compared with fluorescent light or sunlight. 2) Plant growth status was better under 1,0001ux light intensity than 5001ux light intensity and in cases of the same light intensity, the highest growth increase was under optical fiber lighting. while it was showed relatively different according to the different plant species between a fluorescent light and sunlight. 3) The deep pinkish red color of Saintpaulia ‘Delaware’flower was obtained first under an optical fiber lighting and a fluorescent light, a sun light in that order. 4) Regarding interred activity, photosynthetic rate and transpiration rate, intercellular CO, water absorption rate showed a similar tendency generally in spite of a little difference. Namely, transpiration rate and intercellular CO, $CO_2$ a absorption rate increased according to increase of photosynthetic rate. 5) Photosynthetic rate of test plants except Anthurium scherzerianum increased according to increase of light intensity and increased highest under optical fiber lighting in the same light intensity condition. Increases differed under fluorescent light and sun light. That of Saineaulia ‘Delaware’and Anthurium scherzerianum increased in the order of optical fiber, fluorescent light and sun light, but that of Kalanchoe blossfeldiana and Ardisia pusilla increased in the order of optical fiber lighting, sun light and fluorescent light. Summing up these results, In visual value or internal health status of all experimental plants we obtained the highest result under an optical fiber lighting. Finally, we need to introduce an optical fiber lighting in interior landscape space as main light source.

Analysis of Light Traits in a Solar Light-collector Device and its Effects on Lettuce Growth at an Early Growth Stage (태양광 집광장치의 광 특성분석 및 유묘기 상추의 생장에 미치는 영향)

  • Lee, Sanggyu;Lee, Jaesu;Won, Jinho
    • Journal of Environmental Science International
    • /
    • v.28 no.11
    • /
    • pp.1019-1025
    • /
    • 2019
  • The aim of this study was to analyze the light traits in a solar light-collector device and its effects on lettuce growth at an early growth stage. The three hyper parameters used were the reflector diameter (2 cm and 4 cm), coating inside the reflector (chrome-coated, non-coated) and distance from the light fiber (15 cm and 20 cm). The results showed that light efficiency, which is the ratio of light intensity inside the fiber to the solar intensity, improved by 41.1 % when using a 2 cm diameter chrome-coated reflector at a distance of 15 cm from the light fiber; whereas it only improved by 20.6% when a non-coated reflector was used. As the reflector size was increased to 4 cm, the light efficiency for the coated and non-coated reflectors increased by 28.5 % and 26.4 %, respectively, hence, no significant difference was observed. When the light fiber was placed at a distance of 20 cm, the increase in light efficiency with coating treatment was 8 % higher than without coating treatment. We also compared the efficiency of light-fiber treatment with that of LED treatment in our lettuce nursery, and observed that the plants exhibited better growth with light-fiber treatment. We observed an average increase of 1.7 cm in leaf height, $7cm^2/plant$ increase in leaf area, and 32 mm increase in root length upon light-fiber treatment as opposed to those observed with LED treatment. These findings indicate that the collector light-fiber is economically feasible and it improves lettuce growth compared with the LED treatment.

Optical-effect Analysis of Nanoscale Collagen Fibers

  • Lee, Myoung-Hee;Kim, Young Chul
    • Current Optics and Photonics
    • /
    • v.4 no.2
    • /
    • pp.141-147
    • /
    • 2020
  • To understand the cause of the high light transmittance of the human eye, the optical effects of the collagen fibers of the stroma layer, which constitute the majority of the cornea, were analyzed. These collagen fibers, approximately 20 nm in diameter, have a regular arrangement. Accordingly, the optical properties of the collagen fibers and the fiber layer were analyzed by simulation. A standing wave was formed in the incident space by the overlapping incident light and the light reflected by the plate. In addition, it was confirmed that when the collagen fibers are arranged in a layer, the light transmittance periodically changes, depending on the number of fiber layers. The standing wave was formed in the incident space, and the light's intensity distribution was changed by the nanoscale collagen fibers in the section with the collagen layer, which affected the transmittance. To explain this phenomenon, the collagen fiber was defined as a second light source, and an attempt was made to describe the simulation results in terms of overlap of the incident light with the light emitted from the collagen fiber.

A Study on the Resistance for Frost Damage of Polypropylene Fiber Reinforced Light Weight Polymer Cement Concrete (폴리프로필렌섬유보강 경량 폴리머 시멘트 콘크리트의 내동해성에 관한 연구)

  • 소형석;소승영;소양섭;박종호;탁재호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.89-92
    • /
    • 1995
  • For the development of lilght weight cement concrete with high durability, this study used perlite and paper sludge ash by the light weight material, and polypropylene fiber by the reinforcment, and poly-acrylic ester emulsion by the matrix improvement. According to the increasing mixture ratio of fiber and use of polymer, the light weight polypropylene fiber reinforced polymer cement ratio of fiber and use of polymer, the light weight polypropylene fiber reinforced polymer cement concrete were showed high resistance for frost damage.

  • PDF

SIMPLE EXTRINSIC FIBER OPTIC METHOD TO EVALUATE ABSORBANCE IN AQUEOUS NANOPARTICLE

  • Hanh, Nguyen Thi Kieu;Kulkarnib, Atul;Kim, T.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1723-1726
    • /
    • 2008
  • In recent years, there has been a remarkable progress in the development of the fiber optic sensors for the detection of various chemicals. Fiber optic sensors have the advantages of very small size, flexibility and low cost. The fiber optic sensors employing different optical or spectroscopic phenomena have been reported such as bulk absorption, optical reflectance, fluoresces and energy transfer. In this study, the effect of nanoparticle concentration in liquid upon light absorption and scattering was studied using extrinsic fiber optic method. For the evaluation, we used Red (650 nm) and Blue (430 nm) light sources which are coupled through the standard cuvette using optical fiber to detector. The experiments are carried out with Polystyrene latex (400 - 800 nm), and Silicon (35 - 110 nm) nanoparticles suspended in Isopropanol. Differences in light absorption and scattering depending on nanoparticle concentration and type are discussed. This method may be useful to study nanoparticles properties for various application and research.

  • PDF

VOCs Reduction of Visible-light Responsive Photocatalyst coated nylon/polyester composite fiber for Vehicle Interior Parts and Materials (가시광 감응형 광촉매가 코팅처리된 자동차내장재용 Nylon/Polyester 복합섬유의 VOCs 저감)

  • Choi, Sei-Young
    • Elastomers and Composites
    • /
    • v.49 no.1
    • /
    • pp.53-58
    • /
    • 2014
  • In this study, characteristics of visible-light responsive photocatalyst Weltouch, especially VOCs reduction of visible-light responsive photocatalyst coated nylon/polyester composite fiber for vehicle interior parts and materials were evaluated. Visible-light responsive photocatalyst Weltouch was observed for both anatase phase and rutile phase. It is activated by light longer than 420nm. VOCs and formaldehyde generated from visible-light responsive photocatalyst treated nylon/polyester composite fiber were reduced confirmly. Visible-light responsive photocatalyst was firmly attached to the surface of nylon/polyester composite fiber without elimination even after 25 times repeated washing. And washing durability of nylon/polyester composite fiber confirmed the excellence that reduction effects of VOCs after repeated washing has appeared as much as before washing.

A Highly Efficient Method of Light Coupling into Optical Fiber with a Tapered Microlens (Tapered Lens를 사용한 Light Source와 Optical Fiber의 고효율 Coupling)

  • 이상호;강민호
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.16 no.4
    • /
    • pp.22-26
    • /
    • 1979
  • Microlenses with an extremely small radius of curvature are efficiently use d to couple LED/laser diode light into optica1 fiber. We propose a Tapered lens for the highly efficient coupling of the optical fiber communication light souses into the fiber. Ray optical analysis shows that the maximum coupling efficiency is as high as 90 %, Tapered lens with optimum parameters are fabricated by using heating and pulling technique. Experiment shows that this new technique improves the coupling efficiency by two and four times for LED and laser diode, respectively, as compared with the simple flat - end coupling.

  • PDF

Modeling Green-light Fiber Amplifiers for Visible-light Communication Systems

  • Khushik, Muhammad Hanif Ahmed Khan;Jiang, Chun
    • Current Optics and Photonics
    • /
    • v.3 no.2
    • /
    • pp.105-110
    • /
    • 2019
  • The visible-light communication (VLC) system is a promising candidate to fulfill the present and future demands for a high-speed, cost-effective, and larger-bandwidth communication system. VLC modulates the visible-light signals from solid-state LEDs to transmit data between transmitter and receiver, but the broadcasting and the line-of-sight propagation nature of visible-light signals make VLC a communication system with a limited operating range. We present a novel architecture to increase the operating range of VLC. In our proposed architecture, we guide the visible-light signals through the fiber and amplify the dissipated signals using visible-light fiber amplifiers (VLFAs), which are the most important and the novel devices needed for the proposed architecture of the VLC. Therefore, we design, analyze, and apply a VLFA to VLC, to overcome the inherent drawbacks of VLC. Numerical results show that under given constant conditions, the VLFA can amplify the signal up to 35.0 dB. We have analyzed the effects of fiber length, active ion concentration, pump power, and input signal power on the gain and the noise figure (NF).

The study on the fiber optic sensor for the distributed temperature measurement (분포온도 계측을 위한 광파이버 온도센서 시스템에 관한 연구)

  • 이광진;최성구;노도환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1746-1749
    • /
    • 1997
  • A distributed optical fiber temperature sensor can continually monitor the measurand at every point along of its fiber length. It is based on OTDR technics which used extreamlly weak backward scattered light called Raman scattering. When the Pulsed high intensity laser light injected into the optical fiber there are several kind of backscattered light such as Rayleigh, Stokes, and anti-Stokes, etc. caused by impurities molecular vibrations. The temperature distribution is derived form the intensity ratio Raman scatted light-Stokes versus anti-Stokes-and the time function between light injection and signal detection. It is shown that the priniciple of distributed sensing, the system desing, and the result of experiments.

  • PDF

New Light Fiber BLU System for Large LCD Display

  • Chung, Man-Young;Park, Tong-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1398-1400
    • /
    • 2002
  • A new PLF-BLU (Plastic Light Fiber-Back Light Unit) using side glowing light fiber rods array for the 42" LCD TV display has been evelopedd. The light fibers were 14mm in diameter and 50cm long pure transparent acrylic rods of 1.49 refractive index. Fine seratees were made on the flat side of rod. extremely bright incandscent light from lamp fed into the fiber si scattered at scratches then emerges through the surface of rod. A typical PLF-BLU system consists of 24 PLFs produced side glow of brightness of 4,500cd/㎡ to 6,500cd/㎡. New PLF-BLU is proved to be a BLU of rigid, bright, no heat generation, and low power consumption, hence a prospective BLU system for very and/or ultra large size TVs. A new LED-PLF-BLU system considered to be a revolutionary to break-through of the BLU technologies has also been developed, and is decribed briefly.

  • PDF