• Title/Summary/Keyword: Light extraction efficiency

Search Result 112, Processing Time 0.022 seconds

Improvement of Light Extraction Efficiency of LED Packages Using an Enhanced Encapsulant Design

  • Choi, Hyun-Su;Park, Joon-Sik;Moon, Cheol-Hee
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.370-376
    • /
    • 2014
  • We optimized the design of the flat encapsulant of a light-emitting diode (LED) package to obtain higher light output power (LOP), both by experiment and simulation using three-dimensional ray-tracing software. In the experiment, the refractive index of the encapsulant was varied (1.41 and 1.53). In addition, double-layer structures with these refractive indices (1.41/1.53) were investigated by varying the shape of the interface between the two among flat, concave, and convex. The experiments showed that the LOP of the double-layer encapsulant with convex interface increased by 13.4% compared to the single-layer encapsulant with a refractive index 1.41, which was explained by the increase of the light extraction efficiency (LEE) in connection with the increase of the critical angle (${\theta}_c$) and the decrease of the Fresnel reflection.

Enhanced Internal Quantum Efficiency and Light Extraction Efficiency of Light-emitting Diodes with Air-gap Photonic Crystal Structure Formed by Tungsten Nano-mask

  • Cho, Chu-Young;Hong, Sang-Hyun;Kim, Ki Seok;Jung, Gun-Young;Park, Seong-Ju
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.705-708
    • /
    • 2014
  • We demonstrate the blue InGaN/GaN multiple quantum wells light-emitting diodes (LEDs) with an embedded air-gap photonic crystal (PC) which was fabricated by the lateral epitaxial overgrowth of GaN layer on the tungsten (W) nano-masks. The periodic air-gap PC was formed by the chemical reaction of hydrogen with GaN on the W nano-mask. The optical output power of LEDs with an air-gap PC was increased by 26% compared to LEDs without an air-gap PC. The enhanced optical output power was attributed to the improvement in internal quantum efficiency and light extraction efficiency by the air-gap PC embedded in GaN layer.

Light Efficiency Enhancement Technology of OLED: Fabrication of Random Nano External Light Extraction Composite Layer (OLED의 광 효율 향상 기술: 랜덤 나노 외부 광 추출 복합 층 제작)

  • Choi, Geun Su;Jang, Eun Bi;Seo, Ga Eun;Park, Young Wook
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.39-44
    • /
    • 2022
  • The light extraction technology for improving the light efficiency of OLEDs is the core technology for extracting the light inside the OLEDs to the outside. This study demonstrates a simple method to generate random nanostructures (RNSs) containing high refractive index nanoparticles to improve light extraction and viewing angle characteristics. A simple dry low-temperature process makes the nanostructured scattering layer on the polymer resin widely used in the industry. The scattering layer has the shape of randomly distributed nanorods. To control optical properties, we focused on changing the shape and density of RNSs and adjusting the concentration of high refractive index nanoparticles. As a result, the film of the present invention exhibits a perpendicular transmittance of 85% at a wavelength of 550 nm. This film was used as a scattering layer to reduce substrate mode loss and improve EL efficiency in OLEDs.

Fabrication of Scattering Layer for Light Extraction Efficiency of OLEDs (RIE 공정을 이용한 유기발광다이오드의 광 산란층 제작)

  • Bae, Eun Jeong;Jang, Eun Bi;Choi, Geun Su;Seo, Ga Eun;Jang, Seung Mi;Park, Young Wook
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.95-102
    • /
    • 2022
  • Since the organic light-emitting diodes (OLEDs) have been widely investigated as next-generation displays, it has been successfully commercialized as a flexible and rollable display. However, there is still wide room and demand to improve the device characteristics such as power efficiency and lifetime. To solve this issue, there has been a wide research effort, and among them, the internal and the external light extraction techniques have been attracted in this research field by its fascinating characteristic of material independence. In this study, a micro-nano composite structured external light extraction layer was demonstrated. A reactive ion etching (RIE) process was performed on the surfaces of hexagonally packed hemisphere micro-lens array (MLA) and randomly distributed sphere diffusing films to form micro-nano composite structures. Random nanostructures of different sizes were fabricated by controlling the processing time of the O2 / CHF3 plasma. The fabricated device using a micro-nano composite external light extraction layer showed 1.38X improved external quantum efficiency compared to the reference device. The results prove that the external light extraction efficiency is improved by applying the micro-nano composite structure on conventional MLA fabricated through a simple process.

Numerical Simulations of the Light-Extraction Efficiency of LEDs on Sapphire Substrates Patterned with Various Polygonal Pyramids

  • Cui, Hao;Park, Si-Hyun
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.772-776
    • /
    • 2014
  • We report a numerical analysis of the light-extraction efficiency (LEE) of light-emitting diodes (LEDs) on patterned sapphire substrates (PSSs). We considered various n-sided, regular convex pyramids, where n is an integer and $n{\geq}3$. We then considered four cross sections: extruded, subtracted, truncated-extruded, and truncated-subtracted. Ray-tracing simulations were carried out with these polygonal pyramid patterns, and the dimensions of the patterns were systematically varied. Optimized pattern shapes were determined for large LEE. An extruded circular pyramid with a slant angle of $45^{\circ}$ was found to be the optimal patterned shape.

Numerical Analysis of Light Extraction Efficiency of a Core-shell Nanorod Light-emitting Diode

  • Kangseok Kim;Gijun Ju;Younghyun Kim
    • Current Optics and Photonics
    • /
    • v.7 no.5
    • /
    • pp.496-503
    • /
    • 2023
  • We present a detailed analysis of the light extraction efficiency (LEE) of a core-shell nanorod light emitting diode (LED) using finite-difference time-domain (FDTD) simulations. We found that the LEE has a deep dependence on source positions and polarization directions based on the calculated LEE results for every x and z position inside the core-shell nanorod structure. The LEEs are different for the upper part (pyramid) and the lower part (sidewall) of the core-shell nanorod owing to total internal reflection (TIR) and the generated optical modes in the structure. As a result, the LEE of sidewall is much larger than that of pyramid. The averaged LEE of the core-shell nanorod LED is also investigated with variable p-GaN thickness, n-GaN thickness, and height for the design guidelines for the optimized LEE of core-shell nanorod LEDs.

Enhancement of Light Extraction Efficiency of GaN Light Emitting Diodes Using Nanoscale Surface Corrugation (나노크기 표면 요철을 이용한 GaN LED의 광추출효율 향상)

  • Jung, Jae-Woo;Kim, Sarah;Jeong, Jun Ho;Jeong, Jong-Ryul
    • Korean Journal of Materials Research
    • /
    • v.22 no.11
    • /
    • pp.636-641
    • /
    • 2012
  • In this study, we have investigated highly efficient nanoscale surface corrugated light emitting diodes (LEDs) for the enhancement of light extraction efficiency (LEE) of nitride semiconductor LEDs. Nanoscale indium tin oxide (ITO) surface corrugations are fabricated by using the conformal nanoimprint technique; it was possible to observe an enhancement of LEE for the ITO surface corrugated LEDs. By incorporating this novel method, we determined that the total output power of the surface corrugated LEDs were enhanced by 45.6% for patterned sapphire substrate LEDs and by 41.9% for flat c-plane substrate LEDs. The enhancement of LEE through nanoscale surface corrugations was studied using 3-dimensional Finite Different Time Domain (FDTD) calculation. From the FDTD calculations, we were able to separate the light extraction from the top and bottom sides of device. This process revealed that light extraction from the top and bottom sides of a device strongly depends on the substrate and the surface corrugation. We found that enhanced LEE could be understood through the mechanism of enhanced light transmission due to refractive index matching and the increase of light scattering from the corrugated surface. LEE calculations for the encapsulated LEDs devices also revealed that low LEE enhancement is expected after encapsulation due to the reduction of the refractive index contrast.

Enhancement of light extraction efficiency in vertical light-emitting diodes with MgO nano-pyramids structure

  • Son, Jun-Ho;Yu, Hak-Ki;Lee, Jong-Lam
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03a
    • /
    • pp.16-16
    • /
    • 2010
  • GaN-based light-emitting diodes (LEDs) are attracting great interest as candidates for next-generation solid-state lighting, because of their long lifetime, small size, high efficacy, and low energy consumption. However, for general illumination applications, the external quantum efficiency of LEDs, determined by the internal quantum efficiency (IQE) and the light extraction efficiency, must be further increased. The IQE is determined by crystal quality and epitaxial layer structure and high value of IQE more than 70% for blue LEDs have been already reported. However, there is much room for improvement of light extraction efficiency because most of the generated photons from active layer remain inside LEDs by total internal reflection at the interface of semiconductor with air due to the high refractive index difference between LEDs epilayer (for GaN, n=2.5) and air (n=1). The light confining in LEDs will be reabsorbed by the metal electrode or active layer, reducing the efficacy of LEDs. Here, we present the first demonstration of enhanced light extraction by forming a MgO nano-pyramids structure on the surface of vertical-LEDs. The MgO nano-pyramids structure was successfully fabricated at room temperature using conventional electron-beam evaporation without any additional process. The nano-sized pyramids of MgO are formed on the surface during growth due to anisotropic characteristics between (111) and (200) plane of MgO. The ZnO layer with quarter-wavelength in thickness is inserted between GaN and MgO layers to increase the critical angle for total internal reflection, because the refractive index of ZnO (n=1.94) could be matched between GaN (n=2.5) and MgO (n=1.73). The MgO nano-pyramids structure and ZnO refractive-index modulation layer enhanced the light extraction efficiency ofV-LEDs with by 49%, comparing with the V-LEDs with a flat n-GaN surface. The angular-dependent emission intensity shows the enhanced light extraction through the side walls of V-LEDs as well as through the top surface of the n-GaN, because of the increase in critical angle for total internal reflection as well as light scattering at the MgO nano-pyramids surface.

  • PDF

A Study on the Improvement of Light-Extraction Efficiency of Organic Light-Emitting Diodes with a Use of Random-Textured Film (랜덤 택스쳐 필름을 이용한 유기 발광 소자의 광추출 효율 향상에 관한 연구)

  • Kim, Hye Sook;Hwang, Deok Hyeon;Jang, Kyeong Uk;Kim, Tae Wan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.7
    • /
    • pp.446-449
    • /
    • 2015
  • An improvement of light-extraction efficiency of organic light-emitting diodes was studied by using random-textured films (RTF). Device was made in a structure of RTF/glass/ITO/TPD/$Alq_3$/LiF/Al. RTF mold was made by spreading PDMS solution on a sandpaper. By pressing this mold on the glass substrate pre-coated with ZPU material, the RTF was obtained. From this study, there was an improvement of external quantum efficiency by about 30% in the device with the random-textured film (RTF 40) compared to that of the reference one.

Study on light extraction efficiency of a side-etched LED (측면 식각된 LED의 광추출 효율에 관한 연구)

  • Noh, Y.K.;Kwon, K.Y.
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.2
    • /
    • pp.122-129
    • /
    • 2003
  • In the case of a AIGalnP/GaP system rectangular parallelepiped high brightness LED which has side walls etched to be slanted off the vertical direction, we have studied the effects of lossy electrodes and material absorption and etching depth and angle of side walls on its light extraction efficiency. If LEDs have no electrodes, in order to obtain an 80% light extraction efficiency of a TIP (truncated inverted pyramid) LED, the side-etched LEDs should have an etching angle of 22$^{\circ}$~45$^{\circ}$ and an etching depth of 8~17% of a dice height and an absorption coefficient less than 1 $cm^{-1}$ / In case of etching depth of 16~39% of a dice height, we can obtain a 90% light extraction efficiency of a TIP LED. But when LEDs have two electrodes and no absorption loss, in order to obtain an 80% light extraction efficiency of a TIP LEBs, the side-etched LEDs should have an etching angle of 25$^{\circ}$-45$^{\circ}$ and an etching depth of 30~36% of a dice height. In case of etching depth of 57~71% of a dice height, we can obtain a 90% light extraction efficiency of a TIP LED.