• 제목/요약/키워드: Light and dark culture

검색결과 182건 처리시간 0.017초

조직.기관의 분화와 유전자 발현의 조절, 최근의 진보 (Recent Advancement in the Differentiation of Tissues and Organs and Regulation of Gene Expression)

  • Harn, Chang-Yawl
    • 식물조직배양학회지
    • /
    • 제24권1호
    • /
    • pp.1-35
    • /
    • 1997
  • Fertilized egg, by successive cell divisions, differentiates into different tissues and organs with various structures and functions. Different cells and tissues contain different proteins, products of selective gene expression. Not all the genes in any genomes are equally active, temporal and spatial gene expression being the general rule. Present paper attempts to review the tanscriptional mechanisms or the initiations of transcription from several angles. In some of the organisms the genes in the process of transcription or the genes in the inactive state can be seen under the light microscope. Some bands of Drosophila polytene chromosomes may exhibit a swollen or puff appearance under certain conditions. A puff, unfolded or decondensed form of chromomere, represents sets of intense transcriptional activity or RNA synthesis. The heterochromatic X chromosome whose genes remain inactive in the female mammals can be visualized as a dark staining structure called Barr body, Configuration of chromatin differs between transcribed and nontranscribed chromatin. Modification to the chromatin facilitates RNA synthesis. The movement of large polymerase molecule along the DNA would probably be facilitated if some modifications of the chromatin configuration is effected. Methylation of cytosines in CG sequences is associated with inactive genes. Methylation can play a role in determination of mammalian cells during embryogenesis. Demethylation is necessary for the gene to be expressed during development A histone modification that is also known to be correlated with transcriptional capacity of chromatin is acetylation of the lysine residues of the core histones. Chromatin containing a high level of histone acetylation is very sensitive to DNase 1. For the transcription to occur TBP must first bind to the TATA box. Another TF, TF IIB, then binds to the promoter-TBP complex, facilitating the access of RNA polymerase to the transcription initiation site. As recently as eight years ago researchers assumed that histones were irrelevant to the regulation of gene expression. Histones combine with the DNA to form nucleosome of the chromatin. Histones are vital participant in gene regulation. Histone and basal factors compete for access to TATA box. When DNA is exposed to basal factors before histones are introduced, the basal factors assemble on TATA boxes preventing the access of histones, allowing transcription to occur, for transcription to begin, activator protein at the upstream activation sequence or enhancer must interact with the tail of histone H4 at TATA box and cause the histone role particle to dissociate from the TATA box leading to partial breakup of the histone core particle and allowing the basal factors to bind to the TATA box. New concept of genomic flux in contrast to the old concept of static genome has been developed based on the powerful new molecular techniques. Genomic changes such as repetitive DNAs and transposable elements, it is assumed but not yet proved, may affect some of the developmental patterns that characterize particular cells, tissues, organs, and organisms. In the last decade or so remarkable achievement have been made in the researches of the structures and functions of TFs and the specific target sequences located in promoters or enhancers where these TFs bind. TFs have independent domains that bind DNA and that activate transcription. DNA binding domain of TFs serves to bring the protein into the right location. There are many types of DNA binding domains. Common types of motifs can be found that are responsible for binding to DNA. The motifs are usually quite short and comprise only a small part of the protein structure. Steroid receptors have domains for hormone binding, DNA binding, and activating transcription. The zinc finger motif comprises a DNA binding domain. Leucine zipper consist of a stretch of amino acids with a leucine residue in every seventh position Two proteins form a dimer because they interact by means of leucine zippers on similar α-helical domain. This positions their DNA binding basic domains for interaction with the two halves of a DNA sequence with dyad symmetry of TGACTCA, ACTGAGT.

  • PDF

중질소(重窒素)를 이용(利用)한 진흥(振興)과 통일(統一)벼의 암모니움, 질산(窒酸) 및 요소태(尿素態) 질소(窒素)의 흡수특성(吸收特性) 연구(硏究) (Studies on absorption of ammonium, nitrate-and urea-N by Jinheung and Tongil rice using labelled nitrogen)

  • 박훈;석순종
    • 한국토양비료학회지
    • /
    • 제10권4호
    • /
    • pp.225-233
    • /
    • 1978
  • 통일(統一)과 진흥(振興)을 urea, $NH_4$, $NO{_3}^-N$ 별(別) 수경액(水耕液)에 재배(栽培)하여 유수형성기(幼穗形成期)에 중질소(重窒素)를 사용(使用) 각형태별(各形態別) 흡수속도(吸收速度) 및 체내(體內) 분포(分布)(2시간(時間))를 몇개 요인별(要因別)로 조사(調査)한 결과(結果)는 다음과 같다. 1. 질소전력(窒素前歷)이 공급질소(供給窒素)와 같은 경우 두품종(品種) 모두 $NH_4$ >urea> $NO_3$의 순(順)으로 흡수속도(吸收速度)가 크며 언제나 통일(統一)이 진흥(振興)보다 컸다(특히 $NH_4$에서) 이때 흡수(吸收)의 율원단계(律遠段階)(가장느린)는 urea는 근(根)${\rightarrow}$엽초, $NO_3$는 엽초${\rightarrow}$엽신(葉身), $NO_3$는 배양액(培養液)${\rightarrow}$근(根)의 단계(段階)를 보였다. 2. urea에 배양후(培養後) $^{15}NH_4$의 흡수속도(吸收速度)는 ($mgN/g{\cdot}root$ 2hr)의 통일(統一)의 경우 $18^{\circ}C-28^{\circ}C-38^{\circ}C$까지 직선적(直線的)으로 증가(增加)한다($Q_{10}$ 1.21 및 1.32 진흥(振興)은 차이가 없었다. $28^{\circ}C$에서의 암처리(暗處理)는 통일(統一)에서는 차이(差異)가 없었으나 진흥(振興)에서는 12%의 감소(減少)를 가져왔다. 3. 질소전력(窒素前歷)에 의한 N 형태별(形態別) 흡수속도(吸收速度)는 두품종(品種) 모두 $NH_4{\rightarrow}NO_3$ > $NO_3{\rightarrow}NH_4$ > $urea{\rightarrow}NO_3$의 순(順)이었으며 통일(統一)이 언제나 높았다(특히 $NH_4{\rightarrow}NO_3$ >에서), $urea{\rightarrow}NO_3$는 통일은 $NH_4{\rightarrow}NO_3$와 같고 진흥(振興)은 $NO_3{\rightarrow}NH_4$보다 약간 적었다. $NH_4{\rightarrow}^{15}NO_3$$NH_4{\rightarrow}^{15}NH_4 $보다 적었다(특히 통일(統一)). 4. $NH_4{\rightarrow}NO_3$의 경우 15분내(分內)의 흡수속도(吸收速度)는 2시간(時間)동안의 흡수속도(吸收速度)보다 크며 통일(統一)이 진흥(振興)보다 언제가 흡수속도(吸收速度)가 컸다. 5. 부위별(部位別) 중질소과잉률(重窒素過剩率) 및 중질소농도(重窒素濃度)와 근(根)의 중질소흡수속도(重窒素吸收速度)가 대사(大謝)와 전류(轉流)에 각각(各各) 다른 의미(意味)를 가지고 있으나 흡수선호성기준(吸收選好性基準)은 최후자(最後者)가 가장 좋은것 같았다. 질소형전력(窒素形前歷)과 형태별(形態別) 선호성(選好性)의 품종간차이(品種間差異)를 포장조건(圃場條件)과 수도(水稻)의 효율적(效率的) 시비방법(施肥方法)과 관련검토(關聯檢討)하였다.

  • PDF