• Title/Summary/Keyword: Light Transmission Rate

Search Result 191, Processing Time 0.033 seconds

Passivation of organic light emitting diodes with $Al_2O_3/Ag/Al_2O_3$ multilayer thin films grown by twin target sputtering system

  • Jeong, Jin-A;Kim, Han-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.420-423
    • /
    • 2008
  • The characteristics of $Al_2O_3/Ag/Al_2O_3$ multilayer passivaton prepared by twin target sputtering (TTS) system for organic light emitting diodes. The $Al_2O_3/Ag/Al_2O_3$ multilayer thin film passivation on a PET substrate had a high transmittance of 86.44 % and low water vapor transmission rate (WVTR) of $0.011\;g/m^2$-day due to the surface plasmon resonance (SPR) effect of Ag interlayer and effective multilayer structure for preventing the intrusion of water vapor. Using synchrotron x-ray scattering and field emission scanning electron microscope (FESEM) examinations, we investigated the growth behavior of Ag layer on the $Al_2O_3$ layer to explain the SPR effect of the Ag layer. This indicates that an $Al_2O_3/Ag/Al_2O_3$ multilayer passivation is a promising thin film passivation scheme for organic based flexible optoelectronics.

  • PDF

A Hybrid PAPR Reduction Scheme for Optical Wireless OFDM Communication Systems

  • Abdulkafi, Ayad Atiyah;Alias, Mohamad Yusoff;Hussein, Yaseein Soubhi;Omar, Nazaruddin;Salleh, Mohd Kamarulzamin Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1136-1151
    • /
    • 2018
  • This paper proposes a new hybrid scheme to decrease the high peak to average power ratio (PAPR) of optical orthogonal frequency division multiplexing (OFDM) signals in visible light communication (VLC) systems. The PAPR causes nonlinear signal distortions and high power requirements for the VLC transmitter (light emitting diode, LED). The proposed method is applicable for both direct current-biased optical OFDM (DCO-OFDM) and asymmetrically clipped optical OFDM (ACO-OFDM). In the proposed scheme, the PTS method is firstly modified to fit both optical OFDM approaches transmission and then combined with signal clipping method for further PAPR reduction and bit error rate (BER) improvement of the VLC system. The performance of hybrid scheme has been evaluated and compared with the original OFDM based VLC system, conventional PTS and clipping methods. The results show that the hybrid scheme outperforms other methods in terms of both the PAPR reduction and BER performance.

Characterization of Al2O3 Thin Film Encasulation by Plasma Assisted Spatial ALD Process for Organic Light Emitting Diodes

  • Yong, Sang Heon;Cho, Sung Min;Chung, Ho Kyoon;Chae, Heeyeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.234.2-234.2
    • /
    • 2014
  • Organic light emitting diode (OLED) is considered as the next generation flat panel displays due to its advantages of low power consumption, fast response time, broad viewing angle and flexibility. For the flexible application, it is essential to develop thin film encapsulation (TFE) to protect oxidation of organic materials from oxidative species such as oxygen and water vapor [1]. In many TFE research, the inorganic film by atomic layer deposition (ALD) process demonstrated a good barrier property. However, extremely low throughput of ALD process is considered as a major weakness for industrial application. Recently, there has been developed a high throughput ALD, called 'spatial ALD' [2]. In spatial ALD, the precursors and reactant gases are supplied continuously in same chamber, but they are separated physically using a purge gas streams to prevent mixing of the precursors and reactant gases. In this study, the $Al_2O_3$ thin film was deposited by spatial ALD process. We characterized various process variables in the spatial ALD such as temperature, scanning speed, and chemical compositions. Water vapor transmission rate (WVTR) was determined by calcium resistance test and less than $10-^3g/m^2{\cdot}day$ was achieved. The samples were analyzed by x-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscope (FE-SEM).

  • PDF

Indoor IoT Monitoring System based on Visible Light Communication using Smart Phone (스마트폰을 이용한 가시광통신 기반 실내 IoT 모니터링 시스템)

  • Oh, Hoon;Lee, Yeon Jae;Park, Su Bin;An, Hyeon Sik;An, Beongku
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.4
    • /
    • pp.35-43
    • /
    • 2017
  • In this paper, we propose indoor IoT monitoring system based on visible light communication using smart phone with attracting attentions in recent wireless communication. The main features and contributions of the proposed system developed in this paper are as follows. First, the actual data generated within indoor can be processed via the server by using only the visible light communication. Second, the collected data by using the visible light communication can be monitered by smart phone. Performance evaluation of the proposed system is performed under illumination of the normal fluorescent lamps. We first check successful transmission between transmitting module and receiving module of the data collection system. The monitoring system is tested according to the change of the degree of condensing and distance of the LED and the decoding success rate of the proposed smart phone application. We expect that the proposed system can be applied for indoor and outdoor IoT areas together.

The Energy-Efficient Automatic Power Controller of The Signboard using Illuminance Detector (조도 감지기를 이용한 절전형 간판 자동 전원 제어기)

  • Ra, Seung-Tak;Lim, Song-Hwan;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.20 no.2
    • /
    • pp.188-191
    • /
    • 2016
  • In this paper, we propose energy-efficient automatic power controller which can power on and off the signboard at the specified light intensity using the Illuminance Detector. By using segmented section Classification algorithm, light intensity setup system propose variable resistor method which makes users more easy to control. Automatic light on-off system set a standard by measured illuminance data. Measured light-intensity through the Illuminance Detector are communicated with the signboard power controller with wireless communication, and it controls lighting system. In this paper, we evaluated the Energy-Efficient Automatic Power Controller of The Signboard using illuminance detector. Experimental results in lightless environment shows that the error rate is less than 3% by Accredited Testing Laboratories.

Performance comparison of MIMO-VLC systems according to the change of an emission angle (발광 각도 변화에 따른 MIMO-VLC 시스템의 성능 비교)

  • Lee, Byung-Jin;Kim, Yong-Won;Kim, Young-Keun;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.73-79
    • /
    • 2014
  • Visible light communication is a communication method using an LED having a high-speed ON / OFF rate data to be transmitted, it is used as a wireless high speed data transmission. VLC system evolves, the problem of basic research is intended to improve performance and ensure reliability of the communication. The nature of the visible light communication, communication is performed only in the reach of the light, which indicates a big difference by the emission angle of the light. Therefore, in this paper, in the case of indoor environments generally, with the attributes of the multiple LED is equipped, was applied to a MIMO (Multiple Input Multiple Output) communication system. and analyzed SNR performance and total power can be obtained on the reception side by changing the emission angle of the transmitter. As a result of the simulation was run against this, it was confirmed that there is a significant impact on the performance of BER and SNR performance by the emission angle of the transmitter.

Photodegradation of MB on Fe/CNT-TiO2 Composite Photocatalysts Under Visible Light

  • Zhang, Kan;Meng, Ze-Da;Choi, Jong-Geun;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.20 no.5
    • /
    • pp.246-251
    • /
    • 2010
  • The composite photocatalysts of a Fe-modified carbon nanotube (CNT)-$TiO_2$ were synthesized by a two-step sol-gel method at high temperature. Its chemical composition and surface properties were investigated by BET surface area, scanning electron microscope (SEM), Transmission Electron Microscope (TEM), X-ray diffraction (XRD) and ultraviolet-visible (UV-Vis) spectroscopy. The results showed that the BET surface area was improved by modification of Fe, which was related to the adsorption capacity for each composite. Interesting thin layer aggregates of nanosized $TiO_2$ were observed from TEM images, probably stabilized by the presence of CNT, and the surface and structural characterization of the samples was carried out. The XRD results showed that the Fe/CNT-$TiO_2$ composites contained a mix of anatase and rutile forms of $TiO_2$ particles when the precursor is $TiOSO_4{\cdot}xH_2O$ (TOS). An excellent photocatalytic activity of Fe/CNT-$TiO_2$ was obtained for the degradation of methylene blue (MB) under visible light irradiation. It was considered that Fe cation could be doped into the matrix of $TiO_2$, which could hinder the recombination rate of the excited electrons/holes. The photocatalytic activity of the composites was also found to depend on the presence of CNT. The synergistic effects among the Fe, CNT and $TiO_2$ components were responsible for improving the visible light photocatalytic activity.

Dye-sensitized Solar Cells Utilizing Core/Shell Structure Nanoparticle Fabrication and Deposition Process (코어/쉘 구조의 나노입자 제조 및 증착 공정을 활용한 염료감응 태양전지)

  • Jeong, Hongin;Yoo, Jhongryul;Park, Sungho
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.111-117
    • /
    • 2019
  • This study proposed the fabrication and deposition of high purity crystalline $core-TiO_2/shell-Al_2O_3$ nanoparticles. Morphological properties of $core-TiO_2$ and coated $shell-Al_2O_3$ were confirmed by transmission electron microscope (TEM) and transmission electron microscope - energy dispersive spectroscopy (TEM-EDS). The electrical properties of the prepared $core-TiO_2/shell-Al_2O_3$ nanoparticles were evaluated by applying them to a working electrode of a Dye-Sensitized Solar Cell (DSSC). The particle size, growth rate and the main crystal structure of $core-TiO_2$ were analyzed through dynamic light scattering system (DLS), scanning electron microscope (SEM) and X-ray diffraction (XRD). The $core-TiO_2$, which has a particle size of 17.1 nm, a thin film thickness of $20.1{\mu}m$ and a main crystal structure of anatase, shows higher electrical efficiency than the conventional paste-based dye-sensitized solar cell (DSSC). In addition, the energy conversion efficiency (6.28%) of the dye-sensitized solar cell (DSSC) using the $core-TiO_2/shell-Al_2O_3$ nanoparticles selectively controlled to the working electrode is 26.1% higher than the energy conversion efficiency (4.99%) of the dye-sensitized solar cell (DSSC) using the conventional paste method.

Characterization of CdS-quantum dot particles using sedimentation field-flow fractionation (SdFFF) (침강 장-흐름 분획법을 이용한 CdS 양자점 입자의 특성 분석)

  • Choi, Jaeyeong;Kim, Do-Gyun;Jung, Euo Chang;Kwen, HaiDoo;Lee, Seungho
    • Analytical Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.33-39
    • /
    • 2015
  • CdS-QD particles are a nano-sized semiconducting crystal that emits light. Their optical properties show great potential in many areas of applications such as disease-diagnostic reagents, optical technologies, media industries and solar cells. The wavelength of emitting light depends on the particle size and thus the quality control of CdS-QD particle requires accurate determination of the size distribution. In this study, CdS-QD particles were synthesized by a simple ${\gamma}$-ray irradiation method. As a particle stabilizer polyvinyl pyrrolidone (PVP) were added. In order to determine the size and size distribution of the CdS-QD particles, sedimentation field-flow fractionation (SdFFF) was employed. Effects of carious parameters including the the flow rate, external field strength, and field programming conditions were investigated to optimize SdFFF for analysis of CdS-QD particles. The Transmission electron microscopy (TEM) analysis show the primary single particle size was ~4 nm, TEM images indicate that the primarty particles were aggregated to form secondary particles having the mean size of about 159 nm. As the concentration of the stabilizer increases, the particle size tends to decrease. Mean size determined by SdFFF, TEM, and dynamic light scattering (DLS) were 126, 159, and 152 nm, respectively. Results showed SdFFF may become a useful tool for determination of the size and its distribution of various types of inorganic particles.

Compensation Characteristics of Distorted Channels in 200 Gbps WDM Systems using Mid-Span Spectral Inversion Method (200 Gbps WDM 시스템에서 Mid-Span Spectral Inversion 기법을 이용한 채널 왜곡의 보상 특성)

  • 이성렬
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.8
    • /
    • pp.845-854
    • /
    • 2003
  • In this paper, the characteristics of compensation for WDM channel signal distortion due to both chromatic dispersion and Ken effect in 1,000 km 200 Gbps(5${\times}$40 Gbps) WDM systems was investigated. The WDM system has a path-averaged intensity approximation(PAIA) mid-span spectral inversion(MSSI) as a compensation method. This system has a highly nonlinear dispersion shifted fiber(HNL-DSF) optical phase conjugator(OPC) in the mid-way of transmission line. In order to evaluate the degree of compensation, 1 dB eye opening penalty(EOP), bit error rate(BER) characteristics and power penalty of 10$\^$-9/ BER are used. It is confirmed that HNL-DSF is an useful nonlinear medium in OPC fur wideband WDM system with PAIA MSSI and that the optimal compensation for WDM channel distortion is achieved by the selection of pump light power of OPC, which equalize the conjugated light power into the second half fiber section with the input WDM signal light power depending on total transmission length, dispersion coefficient of fiber, OPC pump light wavelength, conversion efficiency of WDM channel in OPC.