• Title/Summary/Keyword: Light Sensitivity

Search Result 614, Processing Time 0.024 seconds

Feasibility of Photodynamic Diagnosis for Challenging TUR-Bt Cases Including Muscle Invasive Bladder Cancer, BCG Failure or 2nd-TUR

  • Takai, Tomoaki;Inamoto, Teruo;Komura, Kazumasa;Yoshikawa, Yuki;Uchimoto, Taizo;Saito, Kenkichi;Tanda, Naoki;Kouno, Junko;Minami, Koichiro;Uehara, Hirofumi;Takahara, Kiyoshi;Hirano, Hajime;Nomi, Hayahito;Kiyama, Satoshi;Azuma, Haruhito
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2297-2301
    • /
    • 2015
  • Background: Despite widely adopted standard methods for follow-up including cystoscopy plus cytology, recurrence rates of non muscle-invasive bladder cancer (NMIBC) have not improved over the past decades, still ranging from 60% through 70%. Hence, widely acceptable surveillance strategies with excellent sensitivity are needed. Early recurrence has led to the development of a novel cystoscopy technique utilizing photodynamic diagnosis (PDD). Although, no studies have evaluated the efficacy of PDD for patients of MIBC, BCG failure or 2nd-transurethelial resection (TUR). Materials and Methods: The present study was performed from October 2012 through May 2013. IRB approved 25 patients initially underwent a cystoscopy examination of white light and blue light followed by the resection of tumors identified. Resections were performed from bladder mucosa areas considered suspicious at PDD, along with PDD negative normal bladder mucosa area resected by random biopsy. Specimens were divided into two groups, PDD positive and negative. Primary endpoints were sensitivity and specificity. Results: A total of 147 specimens extracted from 25 patients were included in the analysis. Some 45 out of 92 PDD-positive specimens were confirmed to have bladder cancer, and 51 out of PDD-negative 55 specimens were confirmed to be cancer negative. The sensitivity of PDD was 91.8% (45/49) and specificity was 52.0% (51/98). The sensitivity:specificity was 89.5% (17/19) : 47.6% (30/63) in 12 2nd-TUR patients, 90.5% (19/21) : 61.1% (11/18) in seven MIBC patients, and 95.0% (19/20) : 48.5% (16/33) in eight failed BCG cases. Conclusions: PDD-TURBT has high sensitivity to diagnose BC even for 2nd-TUR, MIBC or BCG failure cases.

Design a Four Layer Depth-Encoding Detector Using Quasi-Block Scintillator for High Resolution and Sensitivity (고분해능 및 고민감도를 위한 준 블록 섬광체를 사용한 네 층의 반응 깊이 측정 검출기 설계)

  • Seung-Jae Lee;Byungdu Jo
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.2
    • /
    • pp.65-71
    • /
    • 2024
  • To achieve high resolution and sensitivity of positron emission tomography (PET) for small animals, the detector is constructed using very thin and long scintillation pixels. Due to the structure of these scintillation pixels, spatial resolution deterioration occurs outside the system's field of view. To solve this problem, we designed a detector that could improve spatial resolution by measuring the interaction depth and improve sensitivity by using a quasi-block scintillator. A quasi-block scintillator size of 12.6 mm x 12.6 mm x 3 mm was arranged in four layers, and optical sensors were placed on all sides to collect light generated by the interaction between gamma rays and the scintillator. DETECT2000 simulation was performed to evaluate the performance of the designed detector. Flood images were acquired by generating gamma-ray events at 1 mm intervals from 1.3 mm to 11.3 mm within the scintillator of each layer. The spatial resolution and peak-to-peak distance for each location were measured in an 11 x 11 array of flood images. The average measured spatial resolution was 0.25 mm, and the average distance between peaks was 1.0 mm. Through this, it was confirmed that all locations were separated from each other. In addition, because the light signals of all layers were measured separately from each other, the layer of the scintillator that interacted with the gamma rays could be completely separated. When the designed detector is used as a detector in a PET system for small animals, it is considered that excellent spatial resolution and sensitivity can be achieved and image quality can be improved.

Research on the Influence of Inter-turn Short Circuit Fault on the Temperature Field of Permanent Magnet Synchronous Motor

  • Qiu, Hongbo;Yu, Wenfei;Tang, Bingxia;Yang, Cunxiang;Zhao, Haiyang
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1566-1574
    • /
    • 2017
  • When the inter-turn short circuit (ITSC) fault occurs, the distortion of the magnetic field is serious. The motor loss variations of each part are obvious, and the motor temperature field is also affected. In order to obtain the influence of the ITSC fault on the motor temperature distribution, firstly, the normal and the fault finite element models of the permanent magnet synchronous motor (PMSM) were established. The magnetic density distribution and the eddy current density distribution were analyzed, and the mechanism of loss change was revealed. The effects of different forms and degrees of the fault on the loss were obtained. Based on the loss analysis, the motor temperature field calculation model was established, and the motor temperature change considering the loop current was analyzed. The influence of the fault on the motor temperature distribution was revealed. The sensitivity factors that limit the motor continuous operation were obtained. Finally, the correctness of the simulation was verified by experiments. The conclusions obtained are of great significance for the fault and high temperature demagnetization of the permanent magnet analysis.

Compressive strength and mixture proportions of self-compacting light weight concrete

  • Vakhshouri, Behnam;Nejadi, Shami
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.555-566
    • /
    • 2017
  • Recently some efforts have been performed to combine the advantages of light-weight and self-compacting concrete in one package called Light-Weight Self-Compacting Concrete (LWSCC). Accurate prediction of hardened properties from fresh state characteristics is vital in design of concrete structures. Considering the lack of references in mixture design of LWSCC, investigating the proper mixture components and their effects on mechanical properties of LWSCC can lead to a reliable basis for its application in construction industry. This study utilizes wide range of existing data of LWSCC mixtures to study the individual and combined effects of the components on the compressive strength. From sensitivity of compressive strength to the proportions and interaction of the components, two equations are proposed to estimate the LWSCC compressive strength. Predicted values of the equations are in good agreement with the experimental data. Application of lightweight aggregate to reduce the density of LWSCC may bring some mixing problems like segregation. Reaching a higher strength by lowered density is a challenging problem that is investigated as well. The results show that, the compressive strength can be improved by increasing the of mixture density of LWSCC, especially in the range of density under $2000Kg/m^3$.

Effect of Soil Respiration on Light Fraction-C and N Availability in Soil Applied with Organic Matter

  • Ko, Byong-Gu;Lee, Chang-Hoon;Kim, Myung-Sook;Kim, Gun-Yeob;Park, Seong-Jin;Yun, Sun-Gang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.510-516
    • /
    • 2016
  • Soil respiration has been recognized as a key factor of the change of organic matter and fertility due to the carbon and nitrogen mineralization. In this study, we evaluated the effect of soil respiration on the light fraction-C and inorganic N content depending on temperature in soil applied with organic matter. Soil respiration was calculated by using total $CO_2$ flux released from soil applied with $2Mg\;ha^{-1}$ of rice straw compost and rye for 8 weeks incubation at 15, 25, $35^{\circ}C$ under incubation test. After incubation test, light fraction and inorganic N content were investigated. Rye application dramatically increased soil respiration with increasing temperature. $Q_{10}$ value of rye application was 1.69, which was higher 27% than that of rice straw compost application. Light-C and $NO_3-N$ contents were negatively correlated to soil respiration. Light-C in rye application more decreased than that in rice straw compost with temperature levels. These results indicate that temperature sensitivity of soil respiration could affect soil organic mater content and N availability in soil due to carbon availability. Also, light fraction would be useful indicator to evaluate decomposition rate of organic matter in soil under a short-term test.

Contrast Sensitivity as a function of spatial frequency by using polarization (편광을 이용한 눈의 공간주파수-대비민감도 함수 측정기구 설계)

  • Kim, Young-Geun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.5 no.1
    • /
    • pp.43-48
    • /
    • 2000
  • It was to adjust the luminance of light by the rotation angle of the polarizes and analyzer. The luminance value Lmax, Lmin of Contrast Sensitivity could be obtained from the rotation angle ${\theta}_m$ of the average luminance($L_m$), the rotation angle(${\theta}_{max}$, ${\theta}_{min}$) of the maximum and the minimum's amplitude. $$L_{max}=I(0)e^{-2at}{\cdot}cos^2{\theta}_m(1+C_s^{-1})$$ $$L_{min}=I(0)e^{-2at}{\cdot}cos^2{\theta}_m(1-C_s^{-1})$$ We obtained the rotation angle(${\theta}_{max}$, ${\theta}_{min}$) of the polarizes and analyzer from the rotation angle ${\theta}_m$ of the average luminance($L_m$) and the Contrast Sensitivity($C_s$). $${\theta}_{max}=cos^{-1}[cos{\theta}_m{\cdot}(1+C_s^{-1})^{1/2}]$$ $${\theta}_{min}=cos^{-1}[cos{\theta}_m{\cdot}(1-C_s^{-1})^{1/2}]$$.

  • PDF

High Sensitivity Analysis of Optical Bio-Sensor based on Grating-Assisted Strip Directional Coupler (격자 구조형 스트립 방향성 결합기에 기초한 광 바이오-센서의 고 민감도 분석)

  • Kwang-Chun Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.6
    • /
    • pp.157-162
    • /
    • 2023
  • A highly sensitive refractive index bio-sensor based on grating-assisted strip directional coupler (GASDC) is proposed. The sensor is designed using two asymmetric strip waveguides with a top-loaded grating structure in one of the waveguides. Maximum light couples from one waveguide to the other at the resonance wavelength satisfying phase-matching condition (PMC), and it shows that the change in phase-matching condition with the change in refractive index of the analyte medium in the cover region can be used as a measure of the sensitivity. The proposed sensor will be an on-chip device with a high refractive index sensitivity, and the sensor configuration offers a low propagation loss, thereby enhancing the sensitivity. Furthermore, variation of the sensitivity with the waveguide parameters of sensor is evaluated to optimize the design.

Parametric Analysis and Design Optimization of a Pyrotechnically Actuated Device

  • Han, Doo-Hee;Sung, Hong-Gye;Jang, Seung-Gyo;Ryu, Byung-Tae
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.409-422
    • /
    • 2016
  • A parametric study based on an unsteady mathematical model of a pyrotechnically actuated device was performed for design optimization. The model simulates time histories for the chamber pressure, temperature, mass transfer and pin motion. It is validated through a comparison with experimentally measured pressure and pin displacement. Parametric analyses were conducted to observe the detailed effects of the design parameters using a validated performance analysis code. The detailed effects of the design variables on the performance were evaluated using the one-at-a-time (OAT) method, while the scatter plot method was used to evaluate relative sensitivity. Finally, the design optimization was conducted by employing a genetic algorithm (GA). Six major design parameters for the GA were chosen based on the results of the sensitivity analysis. A fitness function was suggested, which included the following targets: minimum explosive mass for the uniform ignition (small deviation), light casing weight, short operational time, allowable pyrotechnic shock force and finally the designated pin kinetic energy. The propellant mass and cross-sectional area were the first and the second most sensitive parameters, which significantly affected the pin's kinetic energy. Even though the peak chamber pressure decreased, the pin kinetic energy maintained its designated value because the widened pin cross-sectional area induced enough force at low pressure.

Implementation of weight sensor with polarization maintaining photonic crystal fiber (편광유지 광결정 광섬유를 이용한 무게센서)

  • Kim, Eung-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.1
    • /
    • pp.133-138
    • /
    • 2015
  • A weight sensor with a polarization maintaining photonic crystal fiber (PCF) is proposed and investigated by experimentally. The sensor system consists of a 3 dB fiber coupler, a half-wave plate, and light source. Wavelength shift induced by weight acting on the polarization maintaining PCF was measured. Two types of sensor patterns, circle type and straight type, were implemented and evaluated. The sensitivity of straight line type was 680 pm/kg and the circle type was 270 pm/kg, respectively. The both types of sensors have a good sensitivity and good linearity in the wide range.

Depletion Sensitivity Evaluation of Rhodium and Vanadium Self-Powered Neutron Detector (SPND) using Monte Carlo Method (Monte Carlo 방법을 이용한 로듐 및 바나듐 자발 중성자계측기의 연소에 따른 민감도 평가)

  • CHA, Kyoon Ho;PARK, Young Woo
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.264-270
    • /
    • 2016
  • Self-powered neutron detector (SPND) is a sensor to monitor a neutron flux proportional to a reactor power of the nuclear power plants. Since an SPND is usually installed in the reactor core and does not require additional outside power, it generates electrons itself from interaction between neutrons and a neutron-sensitive material called an emitter, such as rhodium and vanadium. This paper presents the simulations of the depletion sensitivity evaluations based on MCNP models of rhodium and vanadium SPNDs and light water reactor fuel assembly. The evaluations include the detail geometries of the detectors and fuel assembly, and the modeling of rhodium and vanadium emitter depletion using MCNP and ORIGEN-S codes, and the realistic energy spectrum of beta rays using BETA-S code. The results of the simulations show that the lifetime of an SPND can be prolonged by using vanadium SPND than rhodium SPND. Also, the methods presented here can be used to analyze a life-time of those SPNDs using various emitter materials.