• Title/Summary/Keyword: Light Recognition

Search Result 506, Processing Time 0.031 seconds

An Improved ViBe Algorithm of Moving Target Extraction for Night Infrared Surveillance Video

  • Feng, Zhiqiang;Wang, Xiaogang;Yang, Zhongfan;Guo, Shaojie;Xiong, Xingzhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4292-4307
    • /
    • 2021
  • For the research field of night infrared surveillance video, the target imaging in the video is easily affected by the light due to the characteristics of the active infrared camera and the classical ViBe algorithm has some problems for moving target extraction because of background misjudgment, noise interference, ghost shadow and so on. Therefore, an improved ViBe algorithm (I-ViBe) for moving target extraction in night infrared surveillance video is proposed in this paper. Firstly, the video frames are sampled and judged by the degree of light influence, and the video frame is divided into three situations: no light change, small light change, and severe light change. Secondly, the ViBe algorithm is extracted the moving target when there is no light change. The segmentation factor of the ViBe algorithm is adaptively changed to reduce the impact of the light on the ViBe algorithm when the light change is small. The moving target is extracted using the region growing algorithm improved by the image entropy in the differential image of the current frame and the background model when the illumination changes drastically. Based on the results of the simulation, the I-ViBe algorithm proposed has better robustness to the influence of illumination. When extracting moving targets at night the I-ViBe algorithm can make target extraction more accurate and provide more effective data for further night behavior recognition and target tracking.

Design and Application of Traffic Safety Technology in Chungcheong non-urban Region (충청권 비도심 지역의 교통안전기술 설계 및 적용)

  • Cho, Choong-Yeon;Kim, Yun-Sik;Lee, Min-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.264-272
    • /
    • 2016
  • In previous research, we analyzed traffic accident characteristics in the Chungcheong region through factor analysis, cluster analysis, and a questionnaire using traffic accident analysis system data to enhance Korea's traffic safety. Based on the analysis results, we investigated the design and application of traffic safety technology in non-urban areas in this study. Three technologies are proposed to improve traffic safety facilities for the region: a recognition light at pedestrian crossing works, a recognition light on the road for the underprivileged in traffic works, and a safety LED sign for operation of agricultural machine works. Each technology complements the light pollution problem about snow removal and road safety when applied to existing facilities in the non-urban areas. Solar-based indigenous technology is expected to contribute to road safety in rural areas.

Development of Traffic Light Automatic Discrimination System Using Digital Image Processing Technology (디지털영상처리 기술을 이용한 교통신호등 자동 판별 시스템 개발)

  • Kim, Sun-Dong;Baek, Young-Hyun;Moon, Sung-Ryong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.2
    • /
    • pp.92-99
    • /
    • 2009
  • This paper established the range of the wavelength of traffic lights to detection the color of traffic lights and the color component segmentation with the range of the wavelength. Development of traffic light automatic discrimination system is consists of the color detection and the traffic lights recognition. In this thesis, it established the range of the wavelength of traffic lights to detection the color of traffic lights and the color segmentation with the range of the wavelength. By the segmentation, the traffic light colors(red, orange and green) can be detected and the background is changed into gray image. Next, we proposed the algorithm which can detect the area of traffic lights in the various surroundings with the wavelet transformation algorithm. Also, we proposed traffic lights recognition algorithm using between the edge operator and the Hausdorff distance algorithm based on CBIR(Content-based Image retrieval). Therefore, the proposed algorithm is more superior to the conventional algorithm by experimenting with the illumination including the traffic lights and the backgrounds with various images.

ROI Extraction and Enhancement for Finger Vein Recognition (지정맥 인식을 위한 ROI 검출과 정맥 증강처리)

  • Lee, Ju-Won;Lee, Byeong-Ro
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.4
    • /
    • pp.948-953
    • /
    • 2015
  • Recently, the finger vein recognition based on NIR and CCD sensor camera is investigating the technology to identify a personal using by biometrics. The performance difference of finger vein recognition is generated according to methods that are to separate the vein and background from noises such as finger thickness, ambient light, skin temperature, etc. To improve these problems, in this study, we are proposing the methods for rotation, ROI extraction, and enhancement of vein image captured by NIR LED and CCD camera, and were evaluated performances of these methods. In results of the experiment, the accuracy of the proposed method for image rotation and ROI extraction was 99.8%. And the proposed filter bank method in vein enhancement has shown better performance than retinex algorithm. The proposed method for results of these experimentations will provide better recognition rate when applied to the preprocessing of finger vein recognition.

Recognition of Car License Plate Using Geometric Information from Portable Device Image (휴대단말기 영상에서의 기하학적 정보를 이용한 차량 번호판 인식)

  • Yeom, Hee-Jung;Eun, Sung-Jong;WhangBo, Taeg-Keun
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.10
    • /
    • pp.1-8
    • /
    • 2010
  • Recently, the character image processing technology using portable device camera image at home and abroad are actively conducted, but Practical use are lower rate because of accuracy and time-consuming process problems. In this paper, we propose the license plate recognition method based on geometric information from portable device camera image. In the extracted license plate region we recognize characters using the chain code and the Thickness information through the cumulative projected edge after performing the pre-processing work considering the angle difference, the contrast enhancement and the low resolution from portable device camera image. The proposed algorithm is effective and accurate recognition by light and reducing the processing time. And, the results from the character recognition success rate was 95%. In the future, we will research about license plate recognition algorithm using long distance image or added motion blur image.

Pre-processing Method for Face Recognition Robust to Lightness Variation; Facial Symmetry (조명 변화에 강건한 얼굴 인식의 전처리 기법; 얼굴의 대칭성)

  • Kwon Heak-Bong;Kim Young-Gil;Chang Un-Dong;Song Young-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.4 no.4
    • /
    • pp.163-169
    • /
    • 2004
  • In this paper. we propose a shaded recognition method using symmetric feature. When the existing PCA is applied to shaded face images, the recognition rate is decreased. To improve the recognition rate, we use facial symmetry. If the difference of light and shade is greater than a threshold value, we make a mirror image by replacing the dark side with the bright side symmetrically Then the mirror image is compared with a query image. We compare the performance of the proposed algorithm with the existing algorithms such as PCA, PCA without three eigenfaces and histogram equalization methods. The recognition rate of our method shows $98.889\%$ with the excellent result.

  • PDF

A Study on the Improvement of Automatic Text Recognition of Road Signs Using Location-based Similarity Verification (위치기반 유사도 검증을 이용한 도로표지 안내지명 자동인식 개선방안 연구)

  • Chong, Kyusoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.6
    • /
    • pp.241-250
    • /
    • 2019
  • Road signs are guide facilities for road users, and the Ministry of Land, Infrastructure and Transport has established and operated a system to enhance the convenience of managing these road signs. The role of road signs will decrease in the future autonomous driving, but they will continue to be needed. For the accurate mechanical recognition of texts on road signs, automatic road sign recognition equipment has been developed and it has applied image-based text recognition technology. Yet there are many cases of misrecognition due to irregular specifications and external environmental factors such as manual manufacturing, illumination, light reflection, and rainfall. The purpose of this study is to derive location-based destination names for finding misrecognition errors that cannot be overcome by image analysis, and to improve the automatic recognition of road signs destination names by using Levenshtein similarity verification method based on phoneme separation.

Malaysian Vehicle License Plate Recognition in Low Illumination Images (저 조도 영상에서의 말레이시아 차량 번호판 인식)

  • Kim, Jin-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.10
    • /
    • pp.19-26
    • /
    • 2013
  • In the Malaysian license plates, alphabets and numerals which are made by plastic, are adhered to a frame as embossing style and occasionally characters in horizontal, vertical directions are aligned with narrow space. So the extraction of character stroke information can be hard in the vehicle images of low illumination intensity. In this paper, Malaysian license plate recognition algorithm for low illumination intensity image is proposed. DoG filtering based character stroke generation method is introduced to derive exact connected components of strokes in the vehicle image of low illumination intensity. After localization of plate by connected component analysis, characters are segmented and recognized. Algorithm is experimented for the 6,046 vehicle images captured in Kuala Lumpur by IR camera without using any special light during day and night. The experimental results show that recognition accuracy of plates is 96.1%.

Cell Image Processing Methods for Automatic Cell Pattern Recognition and Morphological Analysis of Mesenchymal Stem Cells - An Algorithm for Cell Classification and Adaptive Brightness Correction -

  • Lim, Kitaek;Park, Soo Hyun;Kim, Jangho;SeonWoo, Hoon;Choung, Pill-Hoon;Chung, Jong Hoon
    • Journal of Biosystems Engineering
    • /
    • v.38 no.1
    • /
    • pp.55-63
    • /
    • 2013
  • Purpose: The present study aimed at image processing methods for automatic cell pattern recognition and morphological analysis for tissue engineering applications. The primary aim was to ascertain the novel algorithm of adaptive brightness correction from microscopic images for use as a potential image analysis. Methods: General microscopic image of cells has a minor problem which the central area is brighter than edge-area because of the light source. This may affect serious problems to threshold process for cell-number counting or cell pattern recognition. In order to compensate the problem, we processed to find the central point of brightness and give less weight-value as the distance to centroid. Results: The results presented that microscopic images through the brightness correction were performed clearer than those without brightness compensation. And the classification of mixed cells was performed as well, which is expected to be completed with pattern recognition later. Beside each detection ratio of hBMSCs and HeLa cells was 95% and 92%, respectively. Conclusions: Using this novel algorithm of adaptive brightness correction could control the easier approach to cell pattern recognition and counting cell numbers.

Traffic Light Detection Using Morphometric Characteristics and Location Information in Consecutive Images (차량용 신호등의 형태적 특징과 연속 영상내의 위치 정보를 이용한 신호등 검출)

  • Jo, Pyeong-Geun;Lee, Joon-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.12
    • /
    • pp.1122-1129
    • /
    • 2015
  • This paper suggests a method of detecting traffic lights for vehicles by combining the HSV(hue saturation value) color model, morphometric characteristics, and location information appearing on consecutive images in daytime. In order to detect the traffic light, the color corresponding to the signal lights should be explored. It is difficult to detect traffic lights among colors of lights from buildings, taillight of cars, leaves, placards, etc. The proposed algorithm searches for the traffic lights from many candidates using morphometric characteristics and location information in consecutive images. The recognition process is divided into three steps. The first step is to detect candidates after converting RGB channel into HSV color model. The second step is to extract the boundaries between the housing of traffic lights and background by exploiting the assumption that the housing has lower brightness than the surrounding background. The last step is to recognize the signal light after eliminating the false candidates using morphometric characteristics and location information appearing on consecutive images. This paper demonstrates successful detection results of traffic lights from various images captured on the city roads.