• Title/Summary/Keyword: Light Output Efficiency

Search Result 232, Processing Time 0.017 seconds

Developing an improved water discharge anchor & trap bolt to prevent basic salt penetration to harbor structures (해수 염기 침투방지를 위한 성능개선 형 물배출 앵커 및 트랩볼트 개발에 관한 연구)

  • Ock, Jong-Ho;Moon, Sang-Deok;Lee, Hwa-Sun;Shin, Kyung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.674-682
    • /
    • 2018
  • Large industrial motors require a large area because of the high risk of shutdown accidents and large industrial accidents due to the lowering of the dielectric strength of the armature windings and overheating problems. Therefore, there is a demand for a large-capacity motor that has small size, light weight, and excellent dielectric strength compared with conventional motors. Superconducting motors have advantages of high efficiency and output power, low size, low weight, and improved stability. This results from greatly increasing the magnetic field generation by using superconductive field coils in rotating machines such as generators and motors. It is very important to design and analyze the cooling system to lower the critical temperature of the wires to achieve superconducting performance. In this study, a field loss analysis and low-temperature heat transfer analysis of the cooling system were performed through the conceptual design of a 100-HP high-temperature superconducting synchronous motor. The field loss analysis shows that a uniform pore magnetic flux density appears when high-temperature superconducting wire is used. The low-temperature heat transfer analysis for gaseous neon and liquid neon showed that a flow rate of 1 kg/min of liquid neon is suitable for maintaining low-temperature stability of the high-temperature superconducting wire.

Fabrication and analysis of $1.3\mum$ spot-size-converter integrated laser diodes (광모드변환기가 집적된 $1.3\mum$ SC-FP-LD 제작 및 특성 해석)

  • 심종인
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.4
    • /
    • pp.271-278
    • /
    • 2000
  • We have fabricated and analyzed the lasing characteristics of 1.3$\mu\textrm{m}$ Spot-Size-Converter (SSC) integrated Fabry-Perot (FP) laser diodes, which are very promising light sources for optical subscriber networks. SSC-LDs has been developed by BIB (buttjoint-built-in) coupling and selective MOVPE growth. High-performances were achieved such as the slope efficiency from the SSC facet of 0.23-0.32 mW/mA, the full-width at the half maximum of the far-field pattern (FFP) of 9.5$^{\circ}$~12.3$^{\circ}$, the alignment tolerances of $\pm$2.3$\mu\textrm{m}$ and $\pm$2.5$\mu\textrm{m}$ within the extra-coupling loss of 1 dB for the vertical and parallel directions, respectively. These experimental results were compared to theoretical ones in order to clarify the operational problems and give a good design direction of the fabricated SSC-LDs. It was revealed that an asymmetric output power from the facets, an irrelevancy of FFP and the waveguide structure around SSC facet region, and a poor temperature characteristics were originated from the scattering in the BIB and SSC sections and SHB effect in the active section for the first time.t time.

  • PDF