• Title/Summary/Keyword: Light Cellular Aggregate

Search Result 4, Processing Time 0.017 seconds

Properties of St/BA Modified Cellular Lightweight Concrete as Sandwich Panel Core (샌드위치패널심재로 활용한 St/BA 개질 다공성 경량 콘크리트의 특성)

  • 강내민;노정식;도정윤;문경주;소양섭
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.31-34
    • /
    • 2003
  • Sandwich panel is composed of the facing sheets which support the external load, the cellular core with the low thermal conductivity and the adhesive agent to bond them. The cellular core was produced by binding lightweight cellular aggregates with cement and two types of acrylic base St/BA emulsion were added with a view to improving the workability ion due to high absorption of light weight aggregate and to develope more strength, respectively. This investigation is to comprehend the effect of the addition of two types of St/BA on thermal conductivity, calorific value and exhaustion content of noxious gas in addition re compressive and flexural strength. Flexural strength of the specimen made with St/BA-2 ranged 20kgf/cm2 to 25kgf/cm2 and was about 50% to 100% as high as that of the non-fiber specimen. Thermal conductivity was recorded from 2.0 to 3.0 kcal/mh$^{\circ}C$ and calorific value of St/BA modified specimen was much lower than that of commercial sandwich panel core of EPS and urethane. Careful caution has to be taken because generation of noxious gas such as CO, NO and SO2 tend to increase with addition of polymer cement ratio.

  • PDF

Strength Properties of Sandwich Panel core using Cellular lightweight Aggregate according to Curing Temperature (양생온도에 따른 다공성 경량골재를 활용한 샌드위치 패널심재의 강도 특성)

  • 노정식;김대규;도정윤;문경주;소양섭
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.35-38
    • /
    • 2003
  • The purpose of this study is to investigate the manufacture of light weight concrete panel using the artificial light-weight aggregate as a part of the substitution of foamed styrene and polyurethane because of narrow allocable temperature Bone in use. The experimental parameter of this study is 40, 60 and 8$0^{\circ}C$ of curing temperature at 100% relative humidity and the type of admixture such as cement, 6mm glass fiber and St/BA emulsion. Testing item is compressive and flexural strength and strength of specimen cured at standard condition is compared to that of specimen cured at 40, 60 and 8$0^{\circ}C$ of curing temperature at 100% relative humidity. As a result or this, it was revealed that the maximum or strength is developed in 6$0^{\circ}C$ or cure temperature at 100% relative humidity in case of the most of the specimen. Specimens modified by St/BA emulsion show the highest development of strength dependent on the curing tmeperature. So, it seems to be effective that evaporation curing method shoud be considered to curing the specimen as the panel core.

  • PDF

APPLICATION OF TIME-OF-FLIGHT NEAR INFRARED SPECTROSCOPY TO WOOD

  • Tsuchikawa, Satoru;Tsutsumi, Shigeaki
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1182-1182
    • /
    • 2001
  • In this study, the newly constructed optical measurement system, which was mainly composed of a parametric tunable laser and a near infrared photoelectric multiplier, was introduced to clarify the optical characteristics of wood as discontinuous body with anisotropic cellular structure from the viewpoint of the time-of-flight near infrared spectroscopy (TOF-NIRS). The combined effects of the cellular structure of wood sample, the wavelength of the laser beam λ, and the detection position of transmitted light on the time resolved profiles were investigated in detail. The variation of the attenuance of peak maxima At, the time delay of peak maxima Δt and the variation of full width at half maximum Δw were strongly dependent on the feature of cellular structure of a sample and the wavelength of the laser beam. The substantial optical path length became about 30 to 35 times as long as sample thickness except the absorption band of water. Δt ${\times}$ Δw representing the light scattering condition increased exponentially with the sample thickness or the distance between the irradiation point and the end of sample. Around the λ=900-950 nm, there may be considerable light scattering in the lumen of tracheid, which is multiple specular reflection and easy to propagate along the length of wood fiber. Such tendency was remarkable for soft wood with the aggregate of thin layers of cell walls. When we apply TOF-NIRS to the cellular structural materials like wood, it is very important to give attention to the difference in the light scattering within cell wall and the multiple specular-like reflections between cell walls. We tried to express the characteristics of the time resolved profile on the basis of the optical parameters for light propagation determined by the previous studies, which were absorption coefficient K and scattering coefficient S from Kubelka-Munk theory and n from nth power cosine model of radiant intensity. The wavelength dependency of the product of K/S and n, which expressed the light-absorbing and -scattering condition and the degree of anisotropy, respectively, was similar to that of the time delay of peak maxima Δt. The variation of the time resolved profile is governed by the combination of these parameters. So, we can easily find the set of parameters for light propagation synthetically from Δt.

  • PDF

Ultrastructure of the Eye in the Snail, Incilaria fruhstorferi (산민달팽이 (Incilaria fruhstorferi) 눈의 미세구조)

  • Chang, Nam-Sub;Han, Jong-Min;Lee, Kwang-Joo
    • Applied Microscopy
    • /
    • v.28 no.3
    • /
    • pp.363-377
    • /
    • 1998
  • After the investigation on the eye of Incilaria fruhstorieri with light and electron microscopes, the following results were obtained. The eye of Incilaria fruhstorferi comprises cornea, lens, vitreous body, retina, and optic nerve inward from the outside. Cornea is composed of squamous, cuboid, columnar and irregular cells, which appear to be light due to their low electron density. In their cytoplasms, glycogen granules, multivesicular body, and nucleus were observed. Vitreous body, located behind non-cellular transparent lens, is filled with long and short microvilli protruding from the retinal epithelia. Retinal epithelium, the organ to perceive objects, is divided into four parts; microvillar layer pigment layer, nuclear layer, and neutrophils layer, from the apical portion. Microvillar layer consists of the type-I photoreceptor cells and pigmented granule cells. In the apical portion of their cytoplasms, long microvilli (length, $19{\mu}m$) , short microvilli (length, $8{\mu}m$), and rolled microvilli grow thick in the irregular and mixed forms. Photoreceptor cells are classified into type-I and type-II, according to their structures. The type-I cell has the apical portion rising roundly like a fan and the lower part which looks like the helve of a fan. In the cytoplasm of the apical portion, there are clear vesicles, cored vesicles, ovoid mitochondria, and microfilaments, and in the cytoplasm of the lower part, photic vesicles with their diameters about 60nm aggregate densely. The type-II photoreceptor cell, located at the lower end of the type-I cells, has a very large ovoid nucleus 3nd no microvilli. In the cytoplasm of the type-II cell, the photic vesicles with sizes 60nm aggregate more densely than in the cytoplasm of the type-I cell. Pigmented cells are classified into type-A and type-B, according to their structures. The type-A is identified to be a large cell containing round granules (diameter, $0.5{\mu}m$) of very high electron density, while the type-B is identified as a small cell where the irregular granules (diameter, $0.6{\mu}m$) of a little lower electron density amalgamate. Nuclear layer ranges from the bottom of pigment layer to the top of the capsule, and contains three kinds of nuclei (nuclei of the type-II photoreceptor cell, pigmented granule cell, and accessory neuron). The capsules covering the outmost part of the eyeball are composed of collagenous fiber and three longitudinal muscle layers (the thickness of each longitudinal muscle layer, $0.4{\mu}m$) and thick circular muscle layer (thickness, $0.3{\mu}m$). Around the capsules, there is a neurophile layer consisting of neurons and nerve fibers. Each neuron has a relatively large ovoid nucleus for its cytoplasm, and in the karyosome, large lumps of keterochromatin form a wheel nucleus.

  • PDF