• Title/Summary/Keyword: Ligand affinity

Search Result 129, Processing Time 0.022 seconds

Preparation of High-Purity Urokinase Using Single-Step Hydrophobic Interaction Chromatography with p-Aminobenzamidine Ligand

  • Cao, Xue-Jun;Zhou, Jian-Hua;Huang, Zhen-Hui;Wu, Xing-Yan;Hur, Byung-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.2
    • /
    • pp.196-203
    • /
    • 2002
  • A novel process for urokinase purification was studied using p-aminobenzamidine as the ligand and sepharose 4B as the matrix. The adsorption, washing, and elution conditions were optimized by an unusual method. An adsorption buffer containing 2.5 M NaCl and $1\%$ Tween 80 facilitated the adsorption of urokinase on the affinity media and prevented contaminants from binding to the p-aminobenzamidine affinity gel. It was found that $5\%$ Tween 80 removed most of the contaminants from the affinity column. A 0.2 M glycine elution buffer containing 0.5 M NaCl (pH 3.0) was found to have a strong elution ability with a high recovery and purity of urokinase. A crude urokinase material of231 IU/mg protein from human urine was purified to 124,300 IU/mg protein with a purification factor of 538 and yield of $86.7\%$. As a result, a high purity urokinase was obtained with only a single affinity chromatography step. The purification process was successfully scaled-up to a 2-1 chromatography column. The resulting urokinase eluate could be directly lyophilized, thereby complying with Chinese pharmacopoeia (1995 version) standards.

Sequence to Structure Approach of Estrogen Receptor Alpha and Ligand Interactions

  • Chamkasem, Aekkapot;Toniti, Waraphan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2161-2166
    • /
    • 2015
  • Estrogen receptors (ERs) are steroid receptors located in the cytoplasm and on the nuclear membrane. The sequence similarities of human $ER{\alpha}$, mouse $ER{\alpha}$, rat $ER{\alpha}$, dog $ER{\alpha}$, and cat $ER{\alpha}$ are above 90%, but structures of $ER{\alpha}$ may different among species. Estrogen can be agonist and antagonist depending on its target organs. This hormone play roles in several diseases including breast cancer. There are variety of the relative binding affinity (RBA) of ER and estrogen species in comparison to $17{\beta}-estradiol$ (E2), which is a natural ligand of both $ER{\alpha}$ and $ER{\beta}$. The RBA of the estrogen species are as following: diethyl stilbestrol (DES) > hexestrol > dienestrol > $17{\beta}-estradiol$ (E2) > 17- estradiol > moxestrol > estriol (E3) >4-OH estradiol > estrone-3-sulfate. Estrogen mimetic drugs, selective estrogen receptor modulators (SERMs), have been used as hormonal therapy for ER positive breast cancer and postmenopausal osteoporosis. In the postgenomic era, in silico models have become effective tools for modern drug discovery. These provide three dimensional structures of many transmembrane receptors and enzymes, which are important targets of de novo drug development. The estimated inhibition constants (Ki) from computational model have been used as a screening procedure before in vitro and in vivo studies.

Efficient Macrocyclization for Cyclicpeptide Using Solid-Phase Reaction

  • Kim, Joong-Hup;Hong, Il-Khee;Kim, Hyo-Jeong;Jeong, Hyeh-Jean;Choi, Moon-Jeong;Yoon, Chang-No;Jeong, Jin-Hyun
    • Archives of Pharmacal Research
    • /
    • v.25 no.6
    • /
    • pp.801-806
    • /
    • 2002
  • Cyclicpeptides are important targets in peptide synthesis because of their interesting biological properties. Constraining highly flexible linear peptides by cyclization is one of the mostly widely used approaches to define the bioactive conformation of peptides. Cyclic peptides often have increased receptor affinity and metabolic stability over their linear counterparts. We carried out virtual screening experiment via docking in order to understand the interaction between HLE-Human Leukocyte Elastase and ligand peptide and to identify the sequence that can be a target in various ligand peptides. We made cyclic peptides as a target base on Metlle-Phe sequence having affinity for ligand and receptor active site docking. There are three ways to cyclize certain sequences of amino acids such as Met-lie-Phe-Gly-Ile. First is head-to-tail cyclization method, linking between N-terminal and C-terminal. Second method utilizes amino acid side chain such as thiol functional group in Cys, making a thioether bond. The last one includes an application of resin-substituted amino acids in solid phase reaction. Among the three methods, solid phase reaction showed the greatest yield. Macrocyclization of Fmoc-Met-Ile-Phe-Gly-Ile-OBn after cleavage of Fmoc protection in solution phase was carried out to give macrocyclic compound 5 in about 7% yield. In the contrast with solution phase reaction, solid phase reaction for macrocyclization of Met-Ile-Phe-Gly-Ile-Asp-Tentagel in normal concentrated condition gave macrocyclic compound 7 in more than 35% yield.

Novel DOT1L ReceptorNatural Inhibitors Involved in Mixed Lineage Leukemia: a Virtual Screening, Molecular Docking and Dynamics Simulation Study

  • Raj, Utkarsh;Kumar, Himansu;Gupta, Saurabh;Varadwaj, Pritish Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3817-3825
    • /
    • 2015
  • Background: The human protein methyl-transferase DOT1L catalyzes the methylation of histone H3 on lysine 79 (H3K79) at homeobox genes and is also involved in a number of significant processes ranging from gene expression to DNA-damage response and cell cycle progression. Inhibition of DOT1L activity by shRNA or small-molecule inhibitors has been established to prevent proliferation of various MLL-rearranged leukemia cells in vitro, establishing DOT1L an attractive therapeutic target for mixed lineage leukemia (MLL). Most of the drugs currently in use for the MLL treatment are reported to have low efficacy, hence this study focused on various natural compounds which exhibit minimal toxic effects and high efficacy for the target receptor. Materials and Methods: Structures of human protein methyl-transferase DOT1L and natural compound databases were downloaded from various sources. Virtual screening, molecular docking, dynamics simulation and drug likeness studies were performed for those natural compounds to evaluate and analyze their anti-cancer activity. Results: The top five screened compounds possessing good binding affinity were identified as potential high affinity inhibitors against DOT1L's active site. The top ranking molecule amongst the screened ligands had a Glide g-score of -10.940 kcal/mol and Glide e-model score of -86.011 with 5 hydrogen bonds and 12 hydrophobic contacts. This ligand's behaviour also showed consistency during the simulation of protein-ligand complex for 20000 ps, which is indicative of its stability in the receptor pocket. Conclusions: The ligand obtained out of this screening study can be considered as a potential inhibitor for DOT1L and further can be treated as a lead for the drug designing pipeline.

Interleukin-18 Binding Protein (IL-18BP): A Long Journey From Discovery to Clinical Application

  • Soohyun Kim;Hyeon Yu;Tania Azam;Charles A. Dinarello
    • IMMUNE NETWORK
    • /
    • v.24 no.1
    • /
    • pp.1.1-1.6
    • /
    • 2024
  • IL-18 binding protein (IL-18BP) was originally discovered in 1999 while attempting to identify an IL-18 receptor ligand binding chain (also known as IL-18Rα) by subjecting concentrated human urine to an IL-18 ligand affinity column. The IL-18 ligand chromatography purified molecule was analyzed by protein microsequencing. The result revealed a novel 40 amino acid polypeptide. To isolate the complete open reading frame (ORF), various human and mouse cDNA libraries were screened using cDNA probe derived from the novel IL-18 affinity column bound molecule. The identified entire ORF gene was thought to be an IL-18Rα gene. However, IL-18BP has been proven to be a unique soluble antagonist that shares homology with a variety of viral proteins that are distinct from the IL-18Rα and IL-18Rβ chains. The IL-18BP cDNA was used to generate recombinant IL-18BP (rIL-18BP), which was indispensable for characterizing the role of IL-18BP in vitro and in vivo. Mammalian cell lines were used to produce rIL-18BP due to its glycosylation-dependent activity of IL-18BP (approximately 20 kDa). Various forms of rIL-18BP, intact, C-terminal his-tag, and Fc fusion proteins were produced for in vitro and in vivo experiments. Data showed potent neutralization of IL-18 activity, which seems promising for clinical application in immune diseases involving IL-18. However, it was a long journey from discovery to clinical use although there have been various clinical trials since IL-18BP was discovered in 1999. This review primarily covers the discovery of IL-18BP along with how basic research influences the clinical development of IL-18BP.

Search Space Reduction Techniques in Small Molecular Docking (소분자 도킹에서 탐색공간의 축소 방법)

  • Cho, Seung Joo
    • Journal of Integrative Natural Science
    • /
    • v.3 no.3
    • /
    • pp.143-147
    • /
    • 2010
  • Since it is of great importance to know how a ligand binds to a receptor, there have been a lot of efforts to improve the quality of prediction of docking poses. Earlier efforts were focused on improving search algorithm and scoring function in a docking program resulting in a partial improvement with a lot of variations. Although these are basically very important and essential, more tangible improvements came from the reduction of search space. In a normal docking study, the approximate active site is assumed to be known. After defining active site, scoring functions and search algorithms are used to locate the expected binding pose within this search space. A good search algorithm will sample wisely toward the correct binding pose. By careful study of receptor structure, it was possible to prioritize sub-space in the active site using "receptor-based pharmacophores" or "hot spots". In a sense, these techniques reduce the search space from the beginning. Further improvements were made when the bound ligand structure is available, i.e., the searching could be directed by molecular similarity using ligand information. This could be very helpful to increase the accuracy of binding pose. In addition, if the biological activity data is available, docking program could be improved to the level of being useful in affinity prediction for a series of congeneric ligands. Since the number of co-crystal structures is increasing in protein databank, "Ligand-Guided Docking" to reduce the search space would be more important to improve the accuracy of docking pose prediction and the efficiency of virtual screening. Further improvements in this area would be useful to produce more reliable docking programs.

The Search of Pig Pheromonal Odorants for Biostimulation Control System Technologies: Prediction of Pig Pheromonal Tetrahydrofuran-2-yl Family Compounds by Means of Ligand Based Approach (생물학적 자극 통제 수단으로 활용하기 위한 돼지 페로몬성 냄새 물질의 탐색: Ligand Based Approach에 의한 돼지 페로몬성 Tetrahydrofuran-2-yl 계 화합물의 예측)

  • Soung, Min-Gyu;Cho, Yun-Gi;Park, Chang-Sik;Sung, Nack-Do
    • Reproductive and Developmental Biology
    • /
    • v.32 no.3
    • /
    • pp.141-146
    • /
    • 2008
  • To search a new porcine pheromonal odorant, the models of four type (2D-QSAR, HQSAR, CoMFA & CoMSlA) were derived from quantitative structure-activity relationship (QSAR) between tetrahydrofuran-2-yl family compounds and their observed binding affinity constants (Obs.p$[Od]_{50}$). The optimized CoMFA model (predictability; $r^{2}_{cv.}(q^2)$=0.886 & correlation coefficient: $r^{2}_{ncv.}$=0.984) from ligand based approaches was confirmed as the best model among them. The $N^{1}$-allyl-$N^{2}$-(tetrahydrofuran-2-yl)methyl)oxalamide (P1), 2-(4-trimethylammoniummethylcyclohexyloxy)tetrahydrofurane (P5) and 2-(3-trimethylammoniummethylcyclohexyloxy)tetrahydrofurane (P6) molecules predicted as porcine pheromonal odorant by the CoMFA model were showed relatively high binding affinity constant values (Pred.p$[Od]_{50}=8{\sim}10$) and very lower toxicity values against some sorts of toxicity.

A pyrazolopyrimidine-based radioligand for imaging of the translocator protein

  • Kwon, Young-Do;Kim, Hee-Kwon
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.2 no.2
    • /
    • pp.69-72
    • /
    • 2016
  • Since the translocator protein (TSPO) is involved in neurodegeneration diseases, many scientists' interest has been focused on the development of a ligand targeting TSPO. A novel compound based on pyrazolo[1,5 -a] pyrimidine structure, DPA-714, has been studied and considered as a TSPO ligand with high affinity. In this highlight review, several researches for the novel radioligand for the translocator protein are illustrated.

Effects of Age on Selective Antagonist Binding to Muscarinic Receptors in Rat Striatum

  • Kim, Hwa-Jung;Lee, Sun-Hyoung;Molly H. Weiler
    • Biomolecules & Therapeutics
    • /
    • v.6 no.4
    • /
    • pp.337-344
    • /
    • 1998
  • The objective of the present study was to investigate the effect of senescence on the binding properties of muscarinic receptors in the neostriatum of young (3 months), middle-aged (18 months) and aged (33 months) male Fischer 344 x Brown Norway hybrid rats by employing direct binding of selective radiolabeled antagonists. Using the selective M, muscarinic receptor antagonist, $[^3H]$AF-DX384, as the ligand, no significant difference in the maximal receptor density (Bmax) was observed in the neostriatum among any age-groups. In contrast, with the selective M, receptor antagonist, $[^3H]$4-DAMP, a significant increase in the number of muscarinic receptors was observed in neostriatal membrane fractions prepared from the aged animals relative to that observed in the young rats. For each ligand there was no age-related change in its affinity (Kd) for the muscarinic receptors. These results indicate that the observed age-related changes in the muscarinic receptor density may not be necessarily decremuntal and depend upon the muscarinic receptor subtype examined.

  • PDF

In Vitro Selection of RNA Aptamer Specific to Salmonella Typhimurium

  • Han, Seung Ryul;Lee, Seong-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.6
    • /
    • pp.878-884
    • /
    • 2013
  • Salmonella is a major foodborne pathogen that causes a variety of human diseases. Development of ligands directly and specifically binding to the Salmonella will be crucial for the rapid detection of, and thus for efficient protection from, the virulent bacteria. In this study, we identified a RNA aptamer-based ligand that can specifically recognize Salmonella Typhimurium through SELEX technology. To this end, we isolated and characterized an RNase-resistant RNA aptamer that bound to the OmpC protein of Salmonella Typhimurium with high specificity and affinity ($K_d$ ~ 20 nM). Of note, the selected aptamer was found to specifically bind to Salmonella Typhimurium, but neither to Gram-positive bacteria (Staphylococcus aureus) nor to other Gram-negative bacteria (Escherichia coli O157:H7). This was evinced by aptamer-immobilized ELISA and aptamer-linked precipitation experiments. This Salmonella species-specific aptamer could be useful as a diagnostic ligand against pathogen-caused foodborne sickness.