• Title/Summary/Keyword: Lifting Model

Search Result 168, Processing Time 0.03 seconds

Development of an Application Model of Simple NIOSH Lifting Equation to Multi-stacking Complex Lifting Tasks (다단적재 복합들기 작업에 대한 NIOSH 단순들기 수식의 적용 모형 개발)

  • Park, Jae-Hee
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.2
    • /
    • pp.76-82
    • /
    • 2009
  • The NIOSH lifting equation has been used as a dominant tool in evaluating the hazard levels of lifting tasks. Although it provides two different ways for each simple and complex lifting task, the NIOSH simple lifting equation is almost used for not only simple tasks but also complex tasks. However, most of lifting tasks in industries are in the form of complex lifting. Therefore some errors occur inevitably in the evaluation of complex lifting tasks. Among complex lifting tasks, a multi-stacking task is the most popular in lifting tasks. To compensate the error in the evaluation of multi-stacking tasks by using the NIOSH simple lifting equation, a set of calculations for finding LIs(Lifting Indices) was performed for the systematically varying multi-stacking tasks. Then a regression model which finds the equivalent height in simple lifting task for multi-stacking task was established. By using this model, multi-stacking tasks can be evaluated with less error. To validate this model, some real multi-stacking tasks were evaluated as examples.

Operation Control Model of Lift Car to Reduce Worker Lifting Time in Tall Building Construction (초고층 건축공사의 작업원 양중시간 단축을 위한 리프트 카 운행제어 모델)

  • Nam, Chulu;Kwon, Jaebeom;Kim, Taehoon;Cho, Hunhee;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.160-161
    • /
    • 2016
  • In tall building construction, lift car for worker lifting is a critical factor for construction productivity. To reduce worker lifting time, existing researches have been conducted on lift car planning. While, research on lift car operation is insufficient. For the efficient reduction of worker lifting time, lift car operation control is needed with lift car planning. Therefore, this research suggests operation control model of lift car to reduce worker lifting time. According to the result of a model test, the operation control model contributes to reasonable reduction of worker lifting time.

  • PDF

Simulation of Whole Body Posture during Asymmetric Lifting (비대칭 들기 작업의 3차원 시뮬레이션)

  • 최경임
    • Journal of the Korea Safety Management & Science
    • /
    • v.4 no.2
    • /
    • pp.11-22
    • /
    • 2002
  • In this study, an asymmetric lifting posture prediction model was developed, which was a three-dimensional model with 12 links and 23 degrees of freedom open kinematic chains. Although previous researchers have proposed biomechanical, psychophysical, or physiological measures as cost functions, for solving redundancy, they lack in accuracy in predicting actual lifting postures and most of them are confined to the two-dimensional model. To develop an asymmetric lifting posture prediction model, we used the resolved motion method for accurately simulating the lifting motion in a reasonable time. Furthermore, in solving the redundant problem of the human posture prediction, a moment weighted Joint Range Availability (JRA) was used as a cost function in order to consider dynamic lifting. However, it is known that the moment weighted JRA as a cost function predicted the lower extremity and L5/S1 joint motions better than the upper extremities, while the constant weighted JRA as a cost function predicted the latter better than the former. To compensate for this, we proposed a hybrid moment weighted JRA as a new cost function with moment weighted for only the lower extremity. In order to validate the proposed cost function, the predicted and real lifting postures for various lifting conditions were compared by using the root mean square(RMS) error. This hybrid JRA reduced RMS more than the previous cost functions. Therefore, it is concluded that the cost function of a hybrid moment weighted JRA can be used to predict three-dimensional lifting postures. To compare with the predicted trajectories and the real lifting movements, graphical validations were performed. The results also showed that the hybrid moment weighted cost function model was found to have generated the postures more similar to the real movements.

Comparison of Compressive Forces on Low Back(L5/S1) for One-hand Lifting and Two-hands Lifting Activity

  • Kim, Hong-Ki
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.5
    • /
    • pp.597-603
    • /
    • 2011
  • Objective: The objective of this study was to compare one-hand and two-hands lifting activity in terms of biomechanical stress for the range of lifting heights from 10cm above floor level to knuckle height. Background: Even though two-hands lifting activity of manual materials handling tasks are prevalent at the industrial site, many manual materials handling tasks which require the worker to perform one-hand lifting are also very common at the industrial site and forestry and farming. Method: Eight male subjects were asked to perform lifting tasks using both a one-handed as well as a two-handed lifting technique. Trunk muscle electromyographic activity was recorded while the subjects performed the lifting tasks. This information was used as input to an EMG-assisted free-dynamic biomechanical model that predicted spinal loading in three dimensions. Results: It was shown that for the left-hand lifting tasks, the values of moment, lateral shear force, A-P shear force, and compressive force were increased by the average 43%, as the workload was increased twice from 7.5kg to 15.0kg. For the right-hand lifting task, these were increased by the average 34%. For the two-hands lifting tasks, these were increased by the average 25%. The lateral shear forces at L5/S1 of one-hand lifting tasks, notwithstanding the half of the workload of two-hands lifting tasks, were very high in the 300~317% of the one of two-hands lifting tasks. The moments at L5/S1 of one-hand lifting tasks were 126~166% of the one of two-hands lifting tasks. Conclusion: It is concluded that the effect of workload for one-hand lifting is greater than two-hands lifting. It can also be concluded that asymmetrical effect of one-hand lifting is much greater than workload effect. Application: The results of this study can be used to provide guidelines of recommended safe weights for tasks involved in one-hand lifting activity.

Optimum Slab-Lifting Positions for Precast Concrete Pavement Construction (프리캐스트 콘크리트 포장 시공 시 최적 슬래브 리프팅 위치)

  • Kim, Seong-Min;Cho, Byoung-Hooi;Han, Seung-Hwan
    • International Journal of Highway Engineering
    • /
    • v.9 no.2 s.32
    • /
    • pp.27-37
    • /
    • 2007
  • This research was conducted to determine the optimum lifting positions on precast concrete slabs for precast concrete pavement construction, based on the analysis of concrete stress distribution under various lifting conditions. To analyze stresses in concrete slabs, the finite element method was implemented and a numerical model of the precast slab that was going to be used in the experimental construction was developed. Changes in the stress distribution due to the lifting angle were investigated because slab lifting is not always performed in the perpendicular direction to the slab surface. In addition, the effect of the lifting level, the distance between the neutral axis of the slab and the lifting point, on the stress distribution was investigated since the lifting point is not always at the neutral axis of the slab. To consider the actual steel design of the precast slab, the effect of the reinforcement near the lifting point was also investigated. From this study, the optimum lifting positions of the precast slabs were determined according to the lifting angle and level, and the results were compared with the lifting positions used in the PCI standards.

  • PDF

A Study on the Determination d Membership Function for Manual Materials Lifting (중량물 수인양에서의 구성함수 결정에 관한 연구)

  • 이종권;송서일
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.4
    • /
    • pp.82-90
    • /
    • 1993
  • Manual lifting, as a part of Manual Materials Handling Activities, is recognized by authorities in the field of occupational health and safety as a major hazard to industrial workers. The most important problem in applying fuzzy model of manual materials lifting is the decision of membership functions on each approaches. : Biomechanical, Physiological, Psychophysical. The primary objectives of this paper suggests to process deciding the most acceptable membership functions for establishing permissible weights on manual lifting activities using fuzzy sets.

  • PDF

Comparison of Biomechanical Stress on Low Back(L5/S1) for One-hand Lifting and Lowering Activity (한 손 들기 작업과 내리기 작업의 요추부위(L5/S1) 부하에 대한 비교 연구)

  • Kim, Hong-Ki
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.4
    • /
    • pp.72-81
    • /
    • 2014
  • Even though two-hands lifting/lowering activity of manual materials handling tasks are prevalent at the industrial site, many manual materials handling tasks which require the worker to perform one-hand lifting/lowering are also very common at the industrial site, forestry, farming, and daily life. The objective of this study was to compare one-hand lowering activity to lifting activity in terms of biomechanical stress for the range of lowering heights from knuckle height to 10cm above floor level with two workload 7.5kg and 15.0kg. Eight male subjects with LMM were asked to perform lifting/lowering tasks using both a one-handed (left-hand and right-hand) as well as a two-handed technique. Spinal loading was estimated through an EMG-assisted free-dynamic biomechanical model. The biomechanical stress of one-hand lowering activity was shown to be 43% lower than that of one-hand lifting activity. It was claimed that the biomechanical stress for one-hand lifting/lowering activity is almost twice (194%) of the one for two-hands lifting/lowering activity. It was also found that biomechanical stress by one-hand lowering/lifting activity with the half workload of two-hands lowering/lifting activity was greater than that of the two-hands lowering/lifting activity. Therefore, it might be a risk to consider the RWL of one-hand lowering/lifting activity to simply be a half of the RWL of two-hands lowering/lifting activity recommended by NIOSH.

Decision Support Model for Selecting of Lifting Methods for Large Spatial Roof Construction (대공간 지붕철골공사 양중공법 선정을 위한 의사결정지원모델)

  • Cha, Min-Su;Lee, Myung-Do
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.5
    • /
    • pp.489-498
    • /
    • 2018
  • The purpose of this study was to propose a decision support model for selecting a lifting method of large spatial roof construction. First, we deducted influential factors consist of 6 factors and 19 sub-factors through literature reviews and expert's advices. Second, the relative importance of each factor was calculated by Analytic Hierarchy Process. As a result, 'site condition(0.237)' among 6 factors and 'available space of the site(0.118)' among 19 sub-factors were identified as the most important factor for selecting lifting method. In addition, methods and procedures were established for evaluating alternatives of lifting methods for each influential factor. A decision support model was completed by providing the Site Suitability Index(SSI) of each lifting method. Finally, we got advices form experts who were actually in charge of the works for large spatial construction project to validate the model. The model proposed in this study was analyzed to be useful in selecting the lifting method. The findings of this study are expected to support the decision making of on-site managers when they select the lifting method on the beginning of the project.

A Study on the Optimization of Lifting Lug for Block Erection (선박 블럭 탑재용 러그 구조 최적화 연구)

  • Min, Dug-Ki;Eum, Sung-Min
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2011.09a
    • /
    • pp.82-89
    • /
    • 2011
  • In general, a number of lifting lugs have been used in shipbuilding industry and the D-type lugs are mainly used. The aim of this paper is to increase the cycle of the use and to reduce the size of lifting lugs to introduce lightweight shackle. In this study, nonlinear elasto-plastic analysis has been performed to confirm the ultimate strength of lifting lugs. In order to evaluate the proper design-load distribution around lug eye, the contact force between lifting lug and shackle pin has been realized by gab element model. Gap element modeling and nonlinear analysis are carried out using the finite element program MSC/PATRAN & ABQUS. Additionally the ultimate strength tests were performed to verify the structural adequacy of newly designed lifting lug and to insure safety of it. The D-10, 15, 20 & 40 ton models which are mainly used in the block erection are selected in the strength test. According to the results of the analysis and strength test, the ultimate strength of the newly designed lifting lugs has been estimated to exceed 3 times of design working load.

  • PDF

Comparison of Three Existing Methods for Predicting Compressive Force on the Lumbosacral Disc (들기작업 설계와 평가를 위한 요천추의 Compressive Force 예측모형 비교연구)

  • Kee, Do-Hyung;Chung, Min-K.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.21 no.4
    • /
    • pp.581-591
    • /
    • 1995
  • The main objective of this study is to compare three representative methods predicting compressive forces on lumbosacral disc : LP-based method, double LP-based method and EMG-assisted method. Two subjects simulated lifting tasks performed in the refractories industry, in which vertical and horizontal distance, and weight of load were varied. To calculate the L5/S1 compressive forces, EMG signals from six trunk muscles were measured and postural data and locations of load were recorded using the Motion Analysis System. The EMG-assisted model was shown to reflect well all three factors considered here. On the other hand, the compressive forces of the LP-based model and the double LP-based model were only significantly affected by weight of load. In addition, lowly positive correlation was observed between compressive forces of the EMG-assisted model and lifting index(LI) of 1991 NIOSH lifting equation. From this results, it can be concluded that compressive forces on L5/S1 by the EMG-assisted method should be used as biomechanical criterion in order to evaluate risk of jobs precisely, and LI can not evaluate risk of lifting tasks fully.

  • PDF