• 제목/요약/키워드: Lift offset

검색결과 13건 처리시간 0.023초

풍동 시험용 Lift-offset 동축 반전 로터에 대한 성능 및 허브 진동 하중 해석의 검증 연구 (Validation for Performance and Hub Vibratory Load Analyses of Lift-offset Coaxial Rotors in Wind-Tunnel Tests)

  • 이유빈;박재상
    • 한국항공우주학회지
    • /
    • 제50권7호
    • /
    • pp.497-505
    • /
    • 2022
  • 본 연구에서는 회전익기 통합 해석 코드인 CAMRAD II를 이용하여 풍동 시험용 Lift-offset 동축 반전 로터의 성능 및 허브 진동 하중 해석을 수행하였다. 본 논문에서는 전체 로터의 추력을 트림 목표 값으로 사용하는 트림 조건 및 상/하 로터 각각의 추력을 트림 목표 값으로 이용하는 트림조건을 사용하였다. 두 종류의 트림 기법에 대하여 다양한 전진비 및 Lift-offset 값을 고려하여 해석을 수행하였고, 계산된 결과를 선행연구의 풍동 시험 및 해석 결과와 상호 비교하였다. 두 종류의 트림 기법을 이용한 연구 결과에서 모두 다양한 전진비 및 Lift-offset 값에 대하여 상/하 로터 각각의 양력, 토크 및 전체 로터의 로터 유효 양항비가 선행연구의 풍동 시험 결과와 유사함을 확인하였다. 또한 로터의 2P 허브 진동 하중 해석 결과를 기반으로 Lift-offset 동축 반전 로터 허브의 진동 하중 특성을 확인하였다. 본 연구를 통하여 CAMRAD II를 이용한 풍동 시험용 Lift-offset 동축 반전 로터의 모델링 및 해석 기법을 적절히 구축하였으며, 성공적으로 검증하였다.

Validation on Conceptual Design and Performance Analyses for Compound Rotorcrafts Considering Lift-offset

  • Go, Jeong-In;Park, Jae-Sang;Choi, Jong-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권1호
    • /
    • pp.154-164
    • /
    • 2017
  • This work conducts a validation study for the XH-59A helicopter using a rigid coaxial rotor system in order to establish the techniques of the conceptual design and performance analysis for the lift-offset compound rotorcraft. As a tool for conceptual design and performance analysis, NDARC (NASA Design and Analysis of Rotorcraft) is used for the present study. An assumed mission profile is considered for the conceptual design of the XH-59A. As a validation result of the design, the dimensions and weight of the XH-59A are appropriately designed when compared to the target values since the relative error is less than 0.5%. Then, performance analyses are conducted for the designed XH-59A model with and without auxiliary propulsion in hover and forward flight conditions. The present analyses show good validity since the prediction results compare well with both the flight test and previous analyses. Therefore, the techniques for the conceptual design and performance analysis of the lift-offset compound helicopter are overall considered to be appropriately established. In addition, this study investigates the influence of the lift-offset on the rotor effective lift-to-drag ratio of the XH-59A helicopter with auxiliary propulsion. As a result, the improvement of the rotor effective lift-to-drag ratio can be obtained by appropriately increasing the lift-offset in high-speed flight.

고속비행 복합형 무인 회전익기의 Lift-offset 로터 허브 진동 하중 성분과 기체 진동 응답의 상관 관계의 연구 (Effect of Lift-offset Rotor Hub Vibratory Load Components on Airframe Vibration Responses of High-Speed Compound Unmanned Rotorcrafts)

  • 김지수;홍성부;권영민;박재상
    • 한국군사과학기술학회지
    • /
    • 제24권3호
    • /
    • pp.255-263
    • /
    • 2021
  • This paper investigates numerically the effect of rotor hub vibratory load components on the airframe vibration responses of high-speed compound unmanned rotorcraft (HCUR) using a lift-offset coaxial rotor, wings, and two propellers. The rotor hub vibratory loads are predicted using a rotorcraft comprehensive analysis code, CAMRAD II, and the airframe vibration responses are calculated by a finite element analysis software, MSC.NASTRAN. It is shown that the vibratory hub pitch moment of a lift-offset coaxial rotor is the most dominant component for both the longitudinal and vertical vibration responses at four specified locations of the airframe.

고속 비행의 Lift-offset 복합형 헬리콥터 기체의 능동 진동 제어 시뮬레이션 (Active Airframe Vibration Control Simulations of Lift-offset Compound Helicopters in High-Speed Flights)

  • 홍성부;권영민;김지수;이유빈;박병현;신현철;박재상
    • 한국군사과학기술학회지
    • /
    • 제24권4호
    • /
    • pp.357-367
    • /
    • 2021
  • This paper studies the simulations of active airframe vibration controls for the Sikorsky X2 helicopter with a lift-offset coaxial rotor. The 4P hub vibratory loads of the X2TD rotor are obtained from the previous work using a rotorcraft comprehensive analysis code, CAMRAD II. The finite element analysis software, MSC.NASTRAN, is used to model the structural dynamics of the X2TD airframe and to analyze the 4P vibration responses of the airframe. A simulation study using Active Vibration Control System(AVCS) with Fx-LMS algorithm to reduce the airframe vibrations is conducted. The present AVCS is modeled using MATLAB Simulink. When AVCS is applied to the X2TD airframe at 250 knots, the 4P longitudinal and vertical vibration responses at the specified airframe positions, such as the pilot seat, co-pilot seat, engine deck, and prop gearbox, are reduced by 30.65 ~ 94.12 %.

Dynamic contact response of a finite beam on a tensionless Pasternak foundation under symmetric and asymmetric loading

  • Coskun, Irfan
    • Structural Engineering and Mechanics
    • /
    • 제34권3호
    • /
    • pp.319-334
    • /
    • 2010
  • The dynamic response of a finite Bernoulli-Euler beam resting on a tensionless Pasternak foundation and subjected to a concentrated harmonic load is investigated in this study. This load may be applied at the center of the beam, or it may be offset from the center. Since the elastic foundation is assumed to be tensionless, the beam may lift off the foundation, resulting in contact and non-contact regions in the system. An analytical/numerical solution is obtained from the governing equations of the contact and non-contact regions to determine the coordinates of the lift-off points. Although there is no nonlinear term in the equations, the problem appears to be nonlinear since the contact regions are not known in advance. Due to that nonlinearity, the essentials of the problem (the coordinates of the lift-off points) are calculated numerically using the Newton-Raphson technique. The results, which represent the symmetric and asymmetric responses of the beam, are presented graphically in this work. They illustrate the effects of the forcing frequency and the beam length on the extent of the contact regions and displacements.

Response of a finite beam on a tensionless Pasternak foundation under symmetric and asymmetric loading

  • Coskun, Irfan;Engin, Hasan;Ozmutlu, Aydin
    • Structural Engineering and Mechanics
    • /
    • 제30권1호
    • /
    • pp.21-36
    • /
    • 2008
  • The static response of a finite beam resting on a tensionless Pasternak foundation and subjected to a concentrated vertical load is assessed in this study. The concentrated vertical load may be applied at the center of the beam, or it may be offset from the center. The tensionless character of the foundation results in the creation of lift-off regions between the beam and the foundation. An analytical/ numerical solution is obtained from the governing equations of the contact and lift-off regions to determine the extent of the contact region. Although there is no nonlinear term in the equations, the problem shows a nonlinear character since the contact region is not known in advance. Due to that nonlinearity, the essentials of the problem (the coordinates of the lift-off points) are calculated numerically using the Newton-Raphson technique. The numerical results are presented in figures to illustrate the behaviours of the free-free and pinned-pinned beams under symmetric or asymmetric loading. The figures illustrate the effects of the shear foundation parameter and the symmetric and asymmetric loading options on the variation of the contact lengths and the displacement of the beam.

고속 비행 복합형 무인 회전익기의 강체 동축반전 로터의 성능 및 공력 하중 해석 (Performance and Airloads Analyses for a Rigid Coaxial Rotor of High-Speed Compound Unmanned Rotorcrafts)

  • 권영민;박재상
    • 한국군사과학기술학회지
    • /
    • 제23권4호
    • /
    • pp.311-318
    • /
    • 2020
  • This study investigates the performance and blade airloads for a rigid coaxial rotor of high-speed compound unmanned rotorcrafts. The present compound unmanned rotorcraft uses not only a rigid coaxial rotor, but also wings and propellers for high-speed flights. For the rigid coaxial rotor in this work, CAMRAD II, a rotorcraft comprehensive analysis code, is used to study the performance at a flight speed of up to 250 knots and blade section lift forces at 230 knots. As the flight speed increases, the rotor power decreases; however, the power of propellers increases to overcome the drag force of a rotorcraft in high-speed flight. The effective lift-to-drag ratio of a rotor has the maximum value of about 11.6 which is much higher than the value of the conventional helicopter. The blade section lift forces of the upper and lower rotors at 230 knots show the similar variation trends for one rotor revolution, and the impulses because of the aerodynamic interaction between both rotors are observed.

Further Improvement in Rotor Aerodynamics Estimation in Helicopter Conceptual Design and Optimization Framework for a Compound Rotorcraft

  • Lim, JaeHoon;Shin, SangJoon;Kee, YoungJung
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권4호
    • /
    • pp.641-650
    • /
    • 2017
  • In order to include the design capability for a compound rotorcraft in a helicopter conceptual design and optimization framework, relevant further improvement was planned and conducted. Previously, a certain conceptual design optimization framework was developed by the present authors to design a modern rotorcraft with single main and tail rotor. The previously developed framework was further improved to expand its capability for a compound rotorcraft. Specifically, its power estimation algorithm was upgraded by using a comprehensive rotorcraft analysis program, CAMRAD II. The presently improved conceptual design and optimization framework was validated using data of the XH-59A aircraft.

정상유동 장치에서 유동 특성 평가 방법에 대한 연구(5) - 평가위치의 영향 (Study on Evaluation Method of Flow Characteristics in Steady Flow Bench(5)-Effect of Evaluation Position)

  • 조시형;엄인용
    • 한국자동차공학회논문집
    • /
    • 제25권2호
    • /
    • pp.179-189
    • /
    • 2017
  • This paper is the fifth investigation on the methods of evaluating flow characteristics in a steady flow bench. In previous studies, several assumptions used in the steady flow bench were examined and it was concluded that the assumption of the solid rotation may lead to serious problems. In addition, though the velocity profiles were improved as the measuring position went downstream, the distributions were far from ideal regardless of the valve angle and evaluation position. The eccentricities were also not sufficiently small to disregard the effect on impulse swirl meter (ISM) measurement. Therefore, the effect of these distribution and eccentricity changes according to the positions needs to be analyzed to discuss the method of flow characteristics estimation. In this context, the effects of evaluation position on the steady flow characteristics were studied. For this purpose, the swirl coefficient and swirl ratio were assessed and compared via measurement of the conventional ISM and calculation based on the velocity by particle image velocimetry(PIV) from 1.75B, 1.75 times bore position apart from the cylinder head, to the 6.00B position. The results show that the swirl coefficients by ISM strictly decrease and the curves as a function of the valve lift become smooth and linear as the measuring position goes downstream. However, the values through the calculation based on the PIV are higher at the farther position due to the approach of the tangential velocity profile to ideal. In addition, there exists an offset effect between the velocity distribution and eccentricity in the low valve lift range when the coefficients are estimated based on the swirl center. Finally, the curve of the swirl ratio by ISM and by PIV evaluation as a function the measuring position intersect around 5.00B plane except at $26^{\circ}$ valve angle.

반 쐐기형 연소실을 채택한 SI 기관에서 포트형상이 정상유동 특성에 미치는 영향 (2) - 유속분포 (2) (Effects of Port Shape on Steady Flow Characteristics in an SI Engine with Semi-Wedge Combustion Chamber (2) - Velocity Distribution (2))

  • 윤인경;엄인용
    • 대한기계학회논문집B
    • /
    • 제41권2호
    • /
    • pp.97-107
    • /
    • 2017
  • 본 논문은 반 쐐기형 연소실에서 포트형상에 따른 정상유동 특성을 비교한 연구의 두 번째로 유동 평가위치의 영향을 고찰한 것이다. 입자영상유속계로 반 쐐기형 연소실에 직선형 포트와 나선형 포트를 적용하여 측정위치를 헤드 밑면부터 하류로 보어의 1,75배 위치 즉 1.75B부터 6배 위치 즉, 6.00B까지 변경하면서 평면유속을 측정하였다. 속도분포 분석 결과 반 쐐기형 연소실을 채택하면 지붕형과 달리 동일 리프트에서 거시적 유속분포와 유선은 스월 거동 중심은 측정위치가 관계없이 거의 일정하다. 직선형 포트에서는 모든 측정위치에서 편심도는 충격식 스월 측정기에서 측정값 왜곡이 발생하는 범위에 들어오고, 나선형 포트에서도 리프트 4mm 이하에서는 모든 측정위치에서 편심의 영향을 무시할 수 없지만, 측정위치가 3.00B 이상이 되면 리프트 5mm 이상에서 편심도가 급격히 감소한다. ISM가정과의 속도분포 차이에 의해 직선형 포트의 리프트 4mm 이하 스월 중심 평가를 제외하고 모든 PIV 평가방법에서 ISM 평가 대비 상대적인 상쇄효과가 있다. 마지막으로 중심 설정과 축 방향 속도분포 가정은 스월 평가에 정성적 영향을 주지 않고, 구체적인 접선속도 분포형태에 따라 절댓값에만 영향을 준다.