• Title/Summary/Keyword: Lift coefficient

Search Result 373, Processing Time 0.02 seconds

AERODYNAMIC EFFECT OF ROOF-FAIRING SYSTEM ON A HEAVY-DUTY TRUCK

  • KIM C. H.;YOUN C. B.
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.221-227
    • /
    • 2005
  • Aim of this study is to investigate an aerodynamic effect of a drag-reducing device on a heavy-duty truck. The vehicle experiences two different kinds of aerodynamic forces such as drag and uplifting force (or downward force) as it is traveling straight forward at constant speed. The drag force on a vehicle may cause an increase of the rate of fuel consumption and driving instability. The rolling resistance of the vehicle may be increased as result of the negative uplifting or downward force on the vehicle. A device named roof-fairing system has been applied to examine the reduction of aerodynamic drag force on a heavy-duty truck. As for a engineering design information, the drag-reducing system should be studied theoretically and experimentally for the best efficiency of the device. Four different types of roof-fairing model were considered in this study to investigate the aerodynamic effect on a model truck. The drag and downward force generated by vehicle has been obtained from numerical calculation conducted in this study. The forces produced on four fairing models considered in this study has been compared each other to evaluate the best fairing model in terms of aerodynamic performance. The result shows that the roof-fairing mounted truck has bigger negative uplifting or downward force than that of non-mounted truck in all speed ranges, and drag force on roof-fairing mounted truck has smaller than that of non-mounted truck. The drag coefficient $(C_D)$ of the roof-fairing mounted truck (Model-3) is reduced up to $41.3\%$ than that of non-mounted trucks (Model-1). A downward force generated by a roof-fairing mounted on a truck is linearly proportional to the rolling resistance force. Therefore, the negative lifting force on a heavy-duty truck is another important factor in aerodynamic design parameter and should be considered in the design of a drag-reducing device of a tractor-trailer. According to the numerical result obtained from present study, the drag force produced by the model-3 has the smallest of all in all speed ranges and has reasonable downward force. The smaller drag force on model-3 with 2/3h in height may results of smallest thickness of boundary layer generated on the topside of the container and the lowest intensity of turbulent kinetic energy occurs at the rear side of the container.

Wind Tunnel Test Study on the Characteristics of Wind-Induced Responses of Tall Buildings with Openings (중공부(中空部)를 가진 고층건축물(高層建築物)의 풍응답(風應答) 특성(特性)에 관한 풍동실험(風洞實驗) 연구(硏究))

  • Kim, Dong Woo;Kil, Yong Sik;Ha, Young Cheol
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.4 s.77
    • /
    • pp.499-509
    • /
    • 2005
  • The excessive wind-induced motion of tall buildings most frequently result from vortex-shedding-induced across-wind oscillations. This form of excitation is most pronounced for relatively flexible, lightweight, and lightly damped high-rise buildings with constant cross-sections. This paper discusses the aerodynamic means ofmitigating the across-wind vortex shedding induced in such situations. Openings are added in both the drag and lift directions in the buildings to provide pressure equalization. Theytend to reduce the effectiveness of across-wind forces by reducing their magnitudes and disrupting their spatial correlation. The effects of buildings with several geometries of openings on aerodynamic excitations and displacement responses have been studied for high-rise buildings with square cross-sections and an aspect ratio of 8:1 in a wind tunnel. High-frequency force balance testshave been carried out at the Kumoh National University of Technology using rigid models with 24 kinds of opening shapes. The measured model's aerodynamic excitations and displacement were compared withthose of a square cylinder with no openings to estimate the effectiveness of openings for wind-induced oscillations. From these results, theopening shape, size, and location of buildings to reduce wind-induced vortex shedding and responses were pointed out.

Development of Rope Winding Device for Safety Fishing Operation of Small Trap Fishing Vessel (소형 통발어선의 안전조업을 위한 로프 권양장치 연구)

  • Kim, Dae-Jin;Jang, Duck-Jong;Park, Ju-Sam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.1
    • /
    • pp.19-29
    • /
    • 2022
  • The result of a questionnaire survey conducted on fishermen using coastal fish traps shows that fall accidents during trap dropping and pulling constitute the highest proportion of accidents at 42.1 %, whereas slipping accidents on the deck or stricture accidents to the body due to the trap winding device constitute 21.1 % each. In addition, 53.2 % of all surveyed subjects responded that trap pulling is the most dangerous task, followed by fish sorting 33.8 %, and trap dropping 9.1 %. As for the main items requested by fishermen for improving the trap winding device, 36.8 % indicated a method to easily lift the trap from the water to the work deck, and 31.6 % indicated a method to overcome the rope tension and prevent slip when pulling the trap to reduce the accidents. The small trap fishing vessel winding device proposed herein can increase the winding force by strengthening the rope contact area and friction coefficient via an appropriate contact angle between the driving roller of the winding device and the rope. When the contact angles between the driving roller and the rope are 1°, 5°, 9°, 14° and 19°, the rope tension showed a difference according to each contact angle. When the contact angle is 9°, the rope tension is the highest at 392.62 kgf. Based on these experimental results, a prototype winding device is manufactured, and 25 traps are installed on a rope with a total length of 100 m at 4 m intervals in the sea, and then the rope tension is measured during trap pulling. As a result, the rope tension increases rapidly at the initial stage of trap pulling and shows the highest value of 31.89 kgf, which subsequently decreases significantly. Therefore, it is appropriate to design the winding force of a small trap fishing vessel winding device based on the maximum tension value of the rope specified at the beginning of the trap pulling operation.