• Title/Summary/Keyword: Lift Force Coefficient

Search Result 88, Processing Time 0.029 seconds

Study on Unsteady Forces Acting on a Heaving Foil (히빙운동익에 작용하는 비정상 유체력 특성)

  • Yang, Chang-Jo;Kim, Beom-Seok;Choi, Min-Seon;Lee, Young-Ho
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.222-227
    • /
    • 2005
  • A Flapping foil produces an effective angle of attack, resulting in a normal force vector with thrust and lift components, and it can be expected to be a new highly effective propulsion system. A heaving foil model was made and it was operated within a circulating water channel at low Reynolds numbers. The unsteady thrust and lift acting on the heaving foil were measured simultaneously using a 6-axis force sensor based on force and moment detectors. We have been examined various conditions such as heaving frequency and amplitude in NACA 0010 profile. The results showed that thrust coefficient and efficiency increased with reduced frequency and amplitude. We also presented the experimental results on the unsteady fluid forces of a heaving foil at various parameters.

  • PDF

Numerical Calculation of Flow Pattern and Fluid Force on a Circular Arc-type Sea Anchor

  • Ro, Ki-Deok;Oh, Se-Kyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.8
    • /
    • pp.1258-1269
    • /
    • 2004
  • The fluid dynamic characteristics of a circular arc type sea anchor were calculated by a discrete vortex method. The flow for the surface of the sea anchor was represented by arranging bound vortices at adequate intervals. The simulations were performed by assuming that the separations occur at edges. With time, the drag coefficient was almost constant but the lift coefficient oscillated in a cycle due to von Karman's vortex street. As the camber ratios increase, the drag coefficient and Strouhal number were almost constant but the oscillating amplitude of the lift coefficient increased largely.

A Numerical Study of Hydrodynamic Forces Acting on Rudders (수치 해석에 의한 단독 타 유체력 계산)

  • 부경태;지용해;김윤수;신수철
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.2
    • /
    • pp.61-69
    • /
    • 2004
  • In this study, flow around rudder is analyzed by utilizing the numerical calculation, and the rudder open water test is performed to validate the calculation. The aim of this study is to design the new rudder shape to improve manoeuvring performance. In first, flow around two-dimensional rudder section is analyzed to understand the characteristics of section profile. And the calculation for all-movable rudders is performed and compared with results of rudder open water test. It is hard to numerically predict the drag force because the value is sensitive to the turbulence modeling and grid spacing near the wall. However, the lift force is predicted well. And we can prove that concave profile of the rudder section produce more lift and torque than convex one as a experiment. However PANEL method that ignore viscous effect cannot distinguish the difference of them. So, we can look for the numerical tool to be developed the new rudder shape.

Numerical simulation of flow around two circular cylinders in various arrangements

  • VU, HUY CONG;HWANG, JIN HWAN
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.334-334
    • /
    • 2015
  • The results of flow feature around two circular cylinders in various arrangements are carried out using two-dimensional simulation at Reynolds number of 200. In this work, time-averaged fluid force acting on the upstream and downstream cylinders were calculated for staggered angle ${\alpha}=0{\sim}90^{\circ}$ in the range of L/D = 1.1~5, where ${\alpha}$ is the angle between the free-stream flow and the line connecting the centers of the cylinders, L is centre-to-centre distance and D is cylinder diameter. The dependence of magnitudes and trends of fluid force coefficient on the spacing ratio L/D and ${\alpha}$ are discussed. In all arrangements of two cylinders, tandem arrangement (${\alpha}=0^{\circ}$) is the case produced a minimum drag coefficient for downstream cylinder. Moreover, the locations of separation and stagnation points or pressure coefficient on surface of the cylinder were examined. Acknowledgement: "This research was a part of the project titled 'Development of integrated estuarine management system', funded by the Ministry of Oceans and Fisheries, Korea."

  • PDF

WALL EFFECTS ON LAMINAR FLOW OVER A CUBE (정육면체 주위 층류 유동에 근처 벽면이 미치는 영향)

  • Kim, Dong-Joo
    • Journal of computational fluids engineering
    • /
    • v.16 no.1
    • /
    • pp.83-89
    • /
    • 2011
  • Laminar flow over a cube near a plane wall is numerically investigated in order to understand the effects of the cube-wall gap on the flow characteristics as well as the drag and lift coefficients. The main focus is placed on the three-dimensional vortical structures and its relation to the lift force applied on the cube. Numerical simulations are performed for the Reynolds numbers between 100 and 300, covering several different flow regimes. Without a wall nearby, the flow at Re=100 is planar symmetric with no vortical structure in the wake. However, when the wall is located close to the cube, a pair of streamwise vortices is induced behind the cube. At Re=250, the wall strengthens the existing streamwise vortices and elongates them in the streamwise direction. As a result, the lift coefficients at Re=100 and 250 increase as the cube-wall gap decreases. On the other hand, without a wall, vortex shedding takes place at Re=300 in the form of a hairpin vortex whose strength changes in time. The head of hairpin vortex or loop vortex, which is closely related to the lift force, seems to disappear due to the nearby wall. Therefore, unlike at Re=100 and 250, the lift coefficient tends to decrease more or less as the cube approaches the wall.

The Estimation of Fatigue Strength of Structure with Practical Dynamic Force by Inverse Problem and Lethargy Coefficient (구조물의 피로강도평가를 위한 역문제 및 무기력계수에 의한 실동하중해석)

  • 양성모;송준혁;강희용;노홍길
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.106-113
    • /
    • 2004
  • Most of mechanical structures are composed of many substructures connected to one another by various types of mechanical joints. In automotive engineering, it is important to study these connected structures under various dynamic forces for the evaluations of fatigue life and stress concentration exactly. In this study, the dynamic response of vehicle structure to external forces is classified an inverse problem involving strains from the experiment and the analysis. The practical dynamic forces are determined by the combination of the analytical and experimental method with analyzed strain by quasi-static finite element analysis under unit force and with measured strain by a strain gage under driving load, respectively. In a stressed body, inter-molecular chemical bonds are failed beyond the certain magnitude. The failure of molecular structure in material is considered as a time process of which rate is determined by mechanical stress. That is, the failure of inter-molecular chemical bonds is the fatigue lift of material. This kinetic concept is expressed as lethargy coefficient. And S-N curve is obtained with the lethargy coefficient from quasi-static tensile test. Equivalent practical dynamic force is obtained from the identification of practical dynamic force for one loading point. Using the practical dynamic force and S-N curve, fatigue life of a window pillar is analyzed with FEM under the identified force by the procedure of above mentioned.

NUMERICAL AERODYNAMIC ANALYSIS OF A TRANSONIC COMMERCIAL AIRPLANE ACCORDING TO THE ANGLE OF ATTACK AND MACH NUMBER (천음속 여객기의 받음각과 마하수에 따른 공력 해석)

  • Kim, Y.K.;Kim, S.C.;Choi, J.W.;Kim, J.S.
    • Journal of computational fluids engineering
    • /
    • v.13 no.4
    • /
    • pp.66-71
    • /
    • 2008
  • This research computes the viscous flow field and aerodynamics around the model of a commercial passenger airplane, Boeing 747-400, which cruises in transonic speed. The configuration was realized through the reverse engineering based on the photo scanning measurement. In results, the pressure coefficients at the several wing section on the wing surface of the airplane was described and discussed to obtain the physical meaning. The lift coefficient increased almost linearly up to $17^{\circ}$. Here the maximum lift occurred at $18^{\circ}$ according to the angle of attack. And the minimum drag is expected at $-2^{\circ}$. The maximum lift coefficient occurred at the Mach number 0.89, and the drag coefficient rapidly increased after the Mach number of 0.92. Also shear-stress transport model predicts slightly lower aerodynamic coefficients than other models and Chen's model shows the highest aerodynamic values. The aerodynamic performance of the airplane elements was presented.

Numerical study on the effect of three-dimensional unsteady tunnel entry flow characteristics on the aerodynamic performance of high-speed train (터널진입시 비정상 유동특성이 고속전철의 공력성능에 미치는 영향에 관한 수치해석적 연구)

  • 정수진;김태훈;성기안
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.5
    • /
    • pp.596-606
    • /
    • 2002
  • The three-dimensional unsteady compressible Euler equation solver with ALE, CFD code, PAM-FLOW based on FEM method has been applied to analyze the flow field around the high speed train which is entering into a channel. From the present study, the pressure and flow transients were calculated and analyzed. The generation of compression wave was observed ahead of train and the high pressure in the gap between the train and the tunnel was also found due to the blockage effects. It was found that abrupt fluctuation in pressure exists in the region from train nose to shoulder of train corresponding to 10% of total length of train during tunnel entry. Computed time history of aerodynamic forces of train during tunnel entry show that drag coefficient rapidly rises and saturates at about non-dimensional time 0.31. The total increase of drag coefficient before and after tunnel entry is about 1.1%. Transient profile of lift force shows similar pattern to drag coefficient except abrupt drop after saturation and lift force in the tunnel increases 0.08% more than that before tunnel entry.

An experimental study on the discharge characteristics of underflow type floating vertical lift gate at free-flow condition (부력식 연직수문의 자유흐름 상태에서 하단방류 특성에 관한 실험적 연구)

  • Han, Il Yeong;Choi, Heung Sik;Lee, Ji Haeng;Ra, Sung Min
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.5
    • /
    • pp.405-415
    • /
    • 2018
  • Hydraulic variables such as discharge coefficient, gate opening, and upstream water depth are required to calculate the discharge of vertical lift gate. It is very important for a precise gate design, because it may affect the rest, to predict the behavior of gate opening during operation. In this study, an equation by which gate opening could be predicted with any upstream water depths was derived from the relation between the calculated value from buoyancy theory and measured one from experiment for a floating gate model. Downpull force was the reason for the differences between the calculated and the measured and it was verified using pressure coefficient. Also, the relation of discharge coefficient with gate opening ratios was derived. The derived relations were used for flood routing and it was realized that downpull force effect should be fully taken into account during gate design.

Wind loading of a finite prism: aspect ratio, incidence and boundary layer thickness effects

  • Heng, Herman;Sumner, David
    • Wind and Structures
    • /
    • v.31 no.3
    • /
    • pp.255-267
    • /
    • 2020
  • A systematic set of low-speed wind tunnel experiments was performed at Re = 6.5×104 and 1.1×105 to study the mean wind loading experienced by surface-mounted finite-height square prisms for different aspect ratios, incidence angles, and boundary layer thicknesses. The aspect ratio of the prism was varied from AR = 1 to 11 in small increments and the incidence angle was changed from α = 0° to 45° in increments of 1°. Two different boundary layer thicknesses were used: a thin boundary layer with δ/D = 0.8 and a thick boundary layer with δ/D = 2.0-2.2. The mean drag and lift coefficients were strong functions of AR, α, and δ/D, while the Strouhal number was mostly influenced by α. The critical incidence angle, at which the prism experiences minimum drag, maximum lift, and highest vortex shedding frequency, increased with AR, converged to a value of αc = 18° ± 2° once AR was sufficiently high, and was relatively insensitive to changes in δ/D. A local maximum value of mean drag coefficient was identified for higher-AR prisms at low α. The overall behaviour of the force coefficients and Strouhal number with AR suggests the possibility of three flow regimes.