• 제목/요약/키워드: Lift Force

검색결과 466건 처리시간 0.025초

Design of an Electromagnet with Low Detent Force and its Control for a Maglev Super-speed Vehicle

  • Lim, Jaewon;Kim, C.H.;Han, J.B.;Han, H.S.
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1667-1673
    • /
    • 2015
  • The vibration and noise caused by the dynamic interaction between electromagnetic suspension and the linear synchronous motor stator beneath a flexible guideway remain problems in designing attractive Maglev trains. One possible method to reduce the sources of vibration is to minimize the detent force in the linear synchronous motor that creates variations in both lift force and thrust. This paper proposes lowering detent force by using separated core instead of single united core. The magnet is designed to adapt to the deflected guideway at a speed of 550km/h. This study will analyze the electromagnetic field and control performance, and how they relate to lift forces and dynamic responses.

균일 유동장내에서의 경사진 원형실린더의 유동유기진동 특성 연구 (Experimental Study on the Flow-Induced Vibration of Inclinced Circular Cylinders in Uniform Flow)

  • 정태영;홍섭;문석준;함일배;이헌곤
    • 소음진동
    • /
    • 제5권3호
    • /
    • pp.303-311
    • /
    • 1995
  • Tests on flow-induced vibration of inclined cylinders in uniform flow were performed in the cavitation tunnel at the Korea Instituteof Machinery and Metals. The test program was intended to investigate flow-induced vibration characteristic of the cylinders with three different inclined angles of 10$^\circ$, 20$^\circ$ and 30$^\circ$ and to estimate the fluid force coefficients acting on the cylinders. Important observations are as follows: 1) Numal drag is dominant compared with viscous drag for the inclined angle over 20.deg. and it has the value from 1.7 to 2.0 as was observed by other researchers. 2) Lift force coefficient has large value at the lock-in range determined by 4$\Theta/f_nD$<8. Measured maximum lift force coefficients at the inclined angle of 30.$^\circ$ and 20$^\circ$ were 0.9 and 0.4 respectively.

  • PDF

복합자석형 자기부상차량의 제어특성 개선 (A Noble Control Scheme of Hybrid Magnet Levitation Train)

  • 권병일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 하계학술대회 논문집
    • /
    • pp.127-130
    • /
    • 1991
  • A magnetic levitation system with hybrid magnets, which is composed of permanent magnets and electromagnets, consumes less power than the conventional attraction type system. A parallel complementary controller on the lift controller is proposed to reduce the sensitivity for parameter variation and force disturbance. Simulation and experiment show that the lift system has robustness to force disturbance.

  • PDF

수상안전을 위한 Sculling 동작의 전산유체역학적 연구 (A Computational Fluid Dynamic Study on the Sculling Motion for Water Safety)

  • 이효택;김용재
    • 수산해양교육연구
    • /
    • 제24권1호
    • /
    • pp.18-24
    • /
    • 2012
  • This study analyses the effects of various angles in sculling on human body lift and drag by means of computational fluid dynamics, discusses the importance of sculling and provides a basis for the development of future water safety education programmes. Study subjects were based on the mean data collected from males in the age of 20s from a survey on the anthropometric dimensions of the Koreans. Moreover, lift, drag as well as coefficient values, all of which were governed by the angle of the palm, were calculated using 3-dimentional modelling produced by computational fluid dynamics programmes i.e. CFD. Interpretations were performed via general k-${\varepsilon}$ turbulence modelling in order to determine lift, drag and coefficient values. Turbulence intensity was set to one per cent as per the figures from preceding research papers and 3-dimentional simulations were performed for a total of five different angles $0^{\circ}$, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$ and $60^{\circ}$. The drag and lift values for the differing angles of the hands during sculling movement are as follows. The lift and drag values gradually increased with the increasing angle of the palm, however, the magnitude of increase for drag started to predominate lift from $45^{\circ}$ and lift gradually decreased from $60^{\circ}$. Overall, it is concluded that the optimal efficiency of sculling can be achieved at the angles $15^{\circ}$ and $30^{\circ}$, and it is anticipated that greater safety and informative education can be ensured for Life saving trainees if the results were to be applied to practical settings. However, as the study was conducted using simulation programmes which performed analyses on the collected anthropometric dimension, the obtained results cannot be made universal, which warrants furthers studies involving varied study subjects with actual measurements taken in water.

아치형 3연동하우스의 풍력계수 분포에 관한 연구 (Distribution of Wind Force Coefficients on the Three-span Arched House)

  • 이현우;이석건
    • 생물환경조절학회지
    • /
    • 제2권1호
    • /
    • pp.46-52
    • /
    • 1993
  • The wind pressure distributions were analyzed through the wind tunnel experiment to provide fundamental criteria for the structural design on the three-span arched house according to the wind directions. In order to investigate the wind force distribution, the variation of the wind force coefficients, the mean wind force coefficients, the drag force coefficients and the lift force coefficients were estimated from the experimental data. The results obtained are as follows : 1. The variation of the wind force with the wind directions on the side walls was the greatest at the upwind edge of the walls. The change of pressure from the positive to the negative on the side walls occurred at the wind direction of 30$^{\circ}$ in the first house and 60$^{\circ}$ in the third house. 2. The maximum negative wind force along the length of the roof appeared at the length ratio of 0-0.2, when the wind directions were 90$^{\circ}$ in the first house, 60$^{\circ}$ in the second house and 30$^{\circ}$ in the third house. 3. The maximum negative wind force along the width of the roof appeared at the width ratio and the wind direction of 0.4 and 0$^{\circ}$ in the first house, 0.4-0.6 and 30$^{\circ}$ in the second house and 0.6 and 30$^{\circ}$ in the third house, respectively. 4. The maximum mean positive and negative wind forces occurred at the wind direction of 60$^{\circ}$ and 30$^{\circ}$, respectively, on the side walls of the first house, and the maximum mean negative wind force on the roof occurred at the wind direction of 30$^{\circ}$ in third house. 5. The maximum drag and lift forces occurred at the wind direction of 30$^{\circ}$, and the maximum lift force appeared in the third house. 6. The parts to be considered for the local wind forces were the edges of the walls, the edges of the x-direction of the roofs, and the locations of the width ratio of 0.4 of the first and third house and the center of the width of the second house for the y-direction of the roofs.

  • PDF

히빙운동익에 작용하는 비정상 유체력 특성 (A Study on the Unsteady Fluid Forces Acting on a Heaving Foil)

  • 양창조
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권1호
    • /
    • pp.150-156
    • /
    • 2006
  • A Flapping foil Produces an effective angle of attack, resulting in a normal force vector with thrust and lift components, and it can be expected to be a new highly effective propulsion system. A heaving foil model was made and it was operated within a circulating water channel at low Reynolds numbers. The unsteady thrust and lift acting on the heaving foil were measured simultaneously using a 6-axis force sensor based on force and moment detectors. We have been examined various conditions such as heaving frequency and amplitude in NACA 0010 Profile. The results showed that thrust coefficient and efficiency increased with reduced frequency and amplitude. We also Presented the experimental results on the unsteady fluid forces of a heaving foil at various Parameters.

히빙운동익에 작용하는 비정상 유체력 특성 (Study on Unsteady Forces Acting on a Heaving Foil)

  • 양창조;김범석;최민선;이영호
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.222-227
    • /
    • 2005
  • A Flapping foil produces an effective angle of attack, resulting in a normal force vector with thrust and lift components, and it can be expected to be a new highly effective propulsion system. A heaving foil model was made and it was operated within a circulating water channel at low Reynolds numbers. The unsteady thrust and lift acting on the heaving foil were measured simultaneously using a 6-axis force sensor based on force and moment detectors. We have been examined various conditions such as heaving frequency and amplitude in NACA 0010 profile. The results showed that thrust coefficient and efficiency increased with reduced frequency and amplitude. We also presented the experimental results on the unsteady fluid forces of a heaving foil at various parameters.

  • PDF

영구자석을 이용한 자기부상 시스템

  • 강도현;김용주;이준각
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 1991년도 추계연구발표회 논문개요집
    • /
    • pp.12-16
    • /
    • 1991
  • The advantage of the controlled permanent magnet system for magnetic levitation is the considerable improvement in levitation force to weight ratio and the reduced rating of the on-board power supply. A combined support and guidance technique with selfstable guide behaviour reduce the expense of control and power electronics. An important feature of this system is the simplified mechanical construction of track and the vehicle does not embrace the guide way. Therefore surface mounted as well as elevated tracks are possible. The magnet was designed to provide a lift force of 750kg for a 3 ton prototype vehicle with 4 magnets by KERI and built by Dae-Bo Magnetic Co., LTD. The paper also describes the assembling technology for permanent magnets, the experimental setup and test results for lift force, guidance force and flux distribution.

  • PDF

Change in Turning Ability According to the Side Fin Angle of a Ship Based on a Mathematical Model

  • Lee, WangGook;Kim, Sang-Hyun;Jung, DooJin;Kwon, Sooyeon
    • 한국해양공학회지
    • /
    • 제36권2호
    • /
    • pp.91-100
    • /
    • 2022
  • In general, the effect of roll motion is not considered in the study on maneuverability in calm water. However, for high-speed twin-screw ships such as the DTMB 5415, the coupling effects of roll and other motions should be considered. Therefore, in this study, the estimation of maneuverability using a 4-degree-of-freedom (DOF; surge, sway, roll, yaw) maneuvering mathematical group (MMG) model was conducted for the DTMB 5415, to improve the estimation accuracy of its maneuverability. Furthermore, a study on the change in turning performance according to the fin angle was conducted. To accurately calculate the lift and drag forces generated by the fins, it is necessary to consider the three-dimensional shape of the wing, submerged depth, and effect of interference with the hull. First, a maneuvering simulation model was developed based on the 4-DOF MMG mathematical model, and the lift force and moment generated by the side fins were considered as external force terms. By employing the CFD model, the lift and drag forces generated from the side fins during ship operation were calculated, and the results were adopted as the external force terms of the 4-DOF MMG mathematical model. A 35° turning simulation was conducted by altering the ship's speed and the angle of the side fins. Accordingly, it was confirmed that the MMG simulation model constructed with the lift force of the fins calculated through CFD can sufficiently estimate maneuverability. It was confirmed that the heel angle changes according to the fin angle during steady turning, and the turning performance changes accordingly. In addition, it was verified that the turning performance could be improved by increasing the heel angle in the outward turning direction using the side fin, and that the sway speed of the ship during turning can affect the turning performance. Hence, it is considered necessary to study the effect of the sway speed on the turning performance of a ship during turning.

Unsteady Lift and Drag Forces Acting on the Elliptic Cylinder

  • Kim Moon-Sang;Park Young-Bin
    • Journal of Mechanical Science and Technology
    • /
    • 제20권1호
    • /
    • pp.167-175
    • /
    • 2006
  • A parametric study has been accomplished to figure out the effects of elliptic cylinder thickness, angle of attack, and Reynolds number on the unsteady lift and drag forces exerted on the elliptic cylinder. A two-dimensional incompressible Navier-Stokes flow solver is developed based on the SIMPLER method in the body-intrinsic coordinates system to analyze the unsteady viscous flow over elliptic cylinder. Thickness-to-chord ratios of 0.2, 0.4, and 0.6 elliptic cylinders are simulated at different Reynolds numbers of 400 and 600, and angles of attack of $10^{\circ},\;20^{\circ},\;and\;30^{\circ}$. Through this study, it is observed that the elliptic cylinder thickness, angle of attack, and Reynolds number are very important parameters to decide the lift and drag forces. All these parameters also affect significantly the frequencies of the unsteady force oscillations.