• Title/Summary/Keyword: Lift & Cruise UAV

Search Result 2, Processing Time 0.015 seconds

파워 효과를 고려한 스마트 무인기의 공력해석

  • Kim, Cheol-Wan;Chung, Jin-Deog
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.39-44
    • /
    • 2005
  • To validate the rotor performance analysis, 3D Computational Fluid Dynamics(CFD) analysis was performed for tilt rotor aeroacoustic model(TRAM). Also, 3D vehicle with rotating rotors was simulated for rotor power effect analysis. Multiple reference frame(MRF) and sliding mesh techniques were implemented to capture the effect of rotor revolution. CFD results were compared with the wind tunnel test results to validate their accuracy. At helicopter mode, CFD analysis predicted lower thrust than the wind tunnel test but CFD results showed good agreement with the test result at cruise mode. Rotor power effect decreased the lift but did not change drag and pitching moment.

  • PDF

Design and Optimization Study on the Multi Flight Modes Canard Rotor/Wing Aircraft with Development of Sizing Program (사이징 프로그램 개발을 통한 다중 비행 모드 Canard Rotor/Wing 항공기의 형상 최적설계)

  • Kim, Jong-Hwan;Kim, Min-Ji;Lee, Jae-Woo;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.22-31
    • /
    • 2005
  • A design study was conducted for a new concept aircraft(Canard Rotor/Wing: CRW) that has the capability of dual mode flight, a rotorcraft and a fixed wing mode. The CRW can show a vertical take off/landing and a high speed/efficiency cruise performance simultaneously. It is not surprising to develop a new sizing code for this class of aircraft because conventional sizing codes developed solely for either the rotary wing or the fixed wing aircraft are not adequate to design a dual mode aircraft operated both by the rotary wing through tip jet effux and the fixed wing lift. Thus, a new design code was developed based on the conventional sizing code by adding some features including rotor performance, duct flow, and engine flow analysis, hence could eventually predict the performance of reaction driven rotor, the flight performance and the flight characteristics. The various design parameters were investigated to find their influences on the flight performance then, a small UAV(Unmanned Aircraft Vehicle) of 1500 lbs class was optimally designed to have minimum weight using the developed sizing code.