• 제목/요약/키워드: Lifetime-LEACH

검색결과 98건 처리시간 0.019초

The Comparison of the 3D graph for the energy-equal of LEACH-Mobile

  • Jang, Seong Pil;Jung, Kye-Dong;Lee, Jong-Yong
    • International journal of advanced smart convergence
    • /
    • 제6권1호
    • /
    • pp.57-67
    • /
    • 2017
  • In this paper, propose an algorithm to improve network lifetime by equally consuming energy of LEACH - Mobile sensor nodes. LEACH is one of energy efficient protocols. However, we did not consider the mobility of nodes. Therefore, the transmission reception success rate of the moving data is reduced. LEACH-Mobile is a protocol that has improved the drawbacks of these LEACH. However, since LEACH-Mobile has a larger number of data packets and consumes more energy than LEACH, it has a disadvantage that the lifetime of the network is short. In order to improvement these disadvantage, Based on the average of the remaining energy of the node, cluster heads are elected with a number of nodes whose energies are larger than the average of the remaining energy from the member nodes. After that, by trying to increase the lifetime of the network by equalizing the remaining energy. In to confirm whether improve the lifetime of the network, In this paper, the number of nodes and the position of all nodes are varied for each specific round, the rest energy is equalized, and the algorithm which uniformly selected the cluster head is compared with LEACH.

LEACH 프로토콜 기반 망 수명 개선 알고리즘 (Algorithm Improving Network Life-time Based on LEACH Protocol)

  • 추영열;최한조;권장우
    • 한국통신학회논문지
    • /
    • 제35권8A호
    • /
    • pp.810-819
    • /
    • 2010
  • 본 논문에서는 환경 감시 등 무선 센서네트워크 응용을 위한 LEACH 프로토콜 기반의 망 수명 개선 알고리즘을 제안한다. 첫 째, LEACH 프로토콜에 따른 클러스터 구성시 각 클러스터에 노드 수를 균등하게 배분한다. 둘째, 클러스터 형성시 각 클러스터별로 헤더 역할을 담당할 노드의 순서를 설정한다. 이후, 정해진 순서에 따라 헤더가 일정 수의 패킷을 수신후 다음 노드에게 헤더 역할을 양도한다. 이렇게 함으로써 각 노드의 에너지 소비를 균등하게 하여 망 전체의 수명이 증대되도록 하였다. 시뮬레이션 결과 망 수명은 LEACH에 비해 두 배 증가하였고 망 전체의 에너지 소비는 1/4로 감소됨을 보여주었다.

Optimal LEACH Protocol with Improved Bat Algorithm in Wireless Sensor Networks

  • Cai, Xingjuan;Sun, Youqiang;Cui, Zhihua;Zhang, Wensheng;Chen, Jinjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권5호
    • /
    • pp.2469-2490
    • /
    • 2019
  • A low-energy adaptive clustering hierarchy (LEACH) protocol is a low-power adaptive cluster routing protocol which was proposed by MIT's Chandrakasan for sensor networks. In the LEACH protocol, the selection mode of cluster-head nodes is a random selection of cycles, which may result in uneven distribution of nodal energy and reduce the lifetime of the entire network. Hence, we propose a new selection method to enhance the lifetime of network, in this selection function, the energy consumed between nodes in the clusters and the power consumed by the transfer between the cluster head and the base station are considered at the same time. Meanwhile, the improved FTBA algorithm integrating the curve strategy is proposed to enhance local and global search capabilities. Then we combine the improved BA with LEACH, and use the intelligent algorithm to select the cluster head. Experiment results show that the improved BA has stronger optimization ability than other optimization algorithms, which the method we proposed (FTBA-TC-LEACH) is superior than the LEACH and LEACH with standard BA (SBA-LEACH). The FTBA-TC-LEACH can obviously reduce network energy consumption and enhance the lifetime of wireless sensor networks (WSNs).

The Improved Efficiency Network Life-time in TEEN

  • Lee, WooSuk;Lee, Seong Ro;Lee, Jong-Yong
    • International journal of advanced smart convergence
    • /
    • 제5권1호
    • /
    • pp.59-65
    • /
    • 2016
  • In this paper, we're compared network protocol which is network lifetime longer when using LEACH Protocol, SEP, and TEEN in a heterogeneous Wireless Sensor Network with a Large Sensor Area. Also, we propose a method of divided layer the wide-area sensor filed and transmitting a multi-hop to improve the network lifetime. And we're compared network protocol which is network lifetime more improved apply the proposed method to LEACH Protocol, SEP, and TEEN. We tried to compare results, TEEN showed the best network lifetime. Apply the proposed method to divided the sensor field, L-TEEN (Layered TEEN)'s network lifetime rates of improvement is highest.

Improving Hot Spot Problem in Layer of DL-LEACH

  • LEE, WooSuk;Jin, Seung Yeon;Jung, Kye-Dong;Lee, Jong-Yong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제9권2호
    • /
    • pp.64-69
    • /
    • 2017
  • The abstract should summarize the contents of the paper and written below the author information. Use th In Wide-area Wireless Sensor Networks, network lifetime is short due to energy consumption due to transmission distance. To improve this, we divide the sensor field into layers and reduce transmission distance through multi-hop transmission. However, there is a problem in that the transmission rate drops because there is no Cluster Head in the layer, or the transmission distance increases due to the layer, and energy is wasted. There are DL-LEACH and EDL-LEACH as Protocols to improve this. DL-LEACH uses either single-hop transmission or multi-hop transmission depending on the situation. As a result, the transmission distance is optimized, thereby reducing energy consumption. In case of EDL-LEACH, it is proposed to improve the data rate in DL-LEACH. It is the same as DL-LEACH, but the Cluster Head is mandatory for all layers to improve the transmission rate. Although there is no Cluster Head for each layer, the transmission rate is improved, but the network life is shortened. In this paper, we try to improve the network lifetime while maintaining the EDL-LEACH transmission rate. The shortened network lifetime is due to Cluster Head overload near the base station. To improve this, the Cluster Head distribution method is improved and the network lifetime is improved.

센서 네트워크에서 에너지 효율성을 고려한 two-tier 라우팅 프로토콜 (Energy Efficient Two-Tier Routing Protocol for Wireless Sensor Networks)

  • 안은철;이성협;조유제
    • 정보처리학회논문지C
    • /
    • 제13C권1호
    • /
    • pp.103-112
    • /
    • 2006
  • 센서 네트워크에서 센서 노드는 제한된 배터리 용량을 가지기 때문에 에너지 효율적인 라우팅을 통한 네트워크 수명의 최대화가 매우 중요하다. 따라서 많은 라우팅 프로토콜들이 개발되었으며 이는 크게 평면 라우팅과 계층적 라우팅으로 분류된다. 최근 계층적 라우팅 방안에 초점을 맞추고 많은 연구가 이루어지고 있으며 대표적인 방안으로 LEACH가 있다. 본 논문에서는 LEACH의 문제점을 분석하고 이를 보완하기 위한 새로운 라우팅 방안으로 ENTER (ENergy efficient Two-tiEr Routing protocol)를 제안한다. ENTER는 LEACH에서 사용된 분산 알고리즘을 통해 클러스터를 형성하며 클러스터 헤드간에 경로를 형성하여 싱크 노드로 통합된 데이터를 전송함으로써 에너지 손실을 줄이고 네트워크 수명을 증가시킨다. 시뮬레이션을 통해 LEACH와 ENTER의 성능을 비교하였으며, 제안된 ENTER가 더 효율적으로 에너지를 이용함으로써 네트워크 수명이 증가함을 알 수 있었다.

A Modified E-LEACH Routing Protocol for Improving the Lifetime of a Wireless Sensor Network

  • Abdurohman, Maman;Supriadi, Yadi;Fahmi, Fitra Zul
    • Journal of Information Processing Systems
    • /
    • 제16권4호
    • /
    • pp.845-858
    • /
    • 2020
  • This paper proposes a modified end-to-end secure low energy adaptive clustering hierarchy (ME-LEACH) algorithm for enhancing the lifetime of a wireless sensor network (WSN). Energy limitations are a major constraint in WSNs, hence every activity in a WSN must efficiently utilize energy. Several protocols have been introduced to modulate the way a WSN sends and receives information. The end-to-end secure low energy adaptive clustering hierarchy (E-LEACH) protocol is a hierarchical routing protocol algorithm proposed to solve high-energy dissipation problems. Other methods that explore the presence of the most powerful nodes on each cluster as cluster heads (CHs) are the sparsity-aware energy efficient clustering (SEEC) protocol and an energy efficient clustering-based routing protocol that uses an enhanced cluster formation technique accompanied by the fuzzy logic (EERRCUF) method. However, each CH in the E-LEACH method sends data directly to the base station causing high energy consumption. SEEC uses a lot of energy to identify the most powerful sensor nodes, while EERRCUF spends high amounts of energy to determine the super cluster head (SCH). In the proposed method, a CH will search for the nearest CH and use it as the next hop. The formation of CH chains serves as a path to the base station. Experiments were conducted to determine the performance of the ME-LEACH algorithm. The results show that ME-LEACH has a more stable and higher throughput than SEEC and EERRCUF and has a 35.2% better network lifetime than the E-LEACH algorithm.

A Study on Cluster Head Selection and a Cluster Formation Plan to Prolong the Lifetime of a Wireless Sensor Network

  • Ko, Sung-Won;Cho, Jeong-Hwan
    • 조명전기설비학회논문지
    • /
    • 제29권7호
    • /
    • pp.62-70
    • /
    • 2015
  • The energy of a sensor in a Wireless Sensor Network (WSN) puts a limit on the lifetime of the network. To prolong the lifetime, a clustering plan is used. Clustering technology gets its energy efficiency through reducing the number of communication occurrences between the sensors and the base station (BS). In the distributed clustering protocol, LEACH-like (Low Energy Adaptive Clustering Hierarchy - like), the number of sensor's cluster head (CH) roles is different depending on the sensor's residual energy, which prolongs the time at which half of nodes die (HNA) and network lifetime. The position of the CH in each cluster tends to be at the center of the side close to BS, which forces cluster members to consume more energy to send data to the CH. In this paper, a protocol, pseudo-LEACH, is proposed, in which a cluster with a CH placed at the center of the cluster is formed. The scheme used allows the network to consume less energy. As a result, the timing of the HNA is extended and the stable network period increases at about 10% as shown by the simulation using MATLAB.

Development of Energy-sensitive Cluster Formation and Cluster Head Selection Technique for Large and Randomly Deployed WSNs

  • Sagun Subedi;Sang Il Lee
    • Journal of information and communication convergence engineering
    • /
    • 제22권1호
    • /
    • pp.1-6
    • /
    • 2024
  • Energy efficiency in wireless sensor networks (WSNs) is a critical issue because batteries are used for operation and communication. In terms of scalability, energy efficiency, data integration, and resilience, WSN-cluster-based routing algorithms often outperform routing algorithms without clustering. Low-energy adaptive clustering hierarchy (LEACH) is a cluster-based routing protocol with a high transmission efficiency to the base station. In this paper, we propose an energy consumption model for LEACH and compare it with the existing LEACH, advanced LEACH (ALEACH), and power-efficient gathering in sensor information systems (PEGASIS) algorithms in terms of network lifetime. The energy consumption model comprises energy-sensitive cluster formation and a cluster head selection technique. The setup and steady-state phases of the proposed model are discussed based on the cluster head selection. The simulation results demonstrated that a low-energy-consumption network was introduced, modeled, and validated for LEACH.

클러스터 구성 최적화를 통한 무선 센서 네트워크 수명 개선 (Lifetime Improvement of WSN by Optimizing Cluster Configuration)

  • 이종용
    • 한국인터넷방송통신학회논문지
    • /
    • 제18권5호
    • /
    • pp.117-121
    • /
    • 2018
  • 무선 센서 네트워크는 센서 노드들이 무선으로 구성되어 있는 네트워크이다. 무선으로 구성이 되기 때문에 설치 장소에 제약이 없다. 대신 센서 노드들은 배터리와 같은 제한된 에너지를 가지게 된다. 따라서 네트워크를 오랫동안 유지하려면 에너지 소모를 최소화하여야 한다. 에너지 소모를 최소화하기 위한 여러 프로토콜이 제안되었는데, 그 중 대표적인 프로토콜이 LEACH 프로토콜이다. LEACH 프로토콜은 클러스터 방식 프로토콜로 센서 공간을 클러스터로 나눔으로써 에너지 소모를 최소화한다. 클러스터의 구성에 따라 네트워크 수명이 증가할 수도 있지만, 오히려 수명이 단축될 수도 있다. 본 논문에서는 LEACH Protocol에서 클러스터 헤드 선출 방법을 개선하여 네트워크 수명을 향상시키고자 한다.