• 제목/요약/키워드: Lifetime Prediction

검색결과 220건 처리시간 0.028초

저주파 노이즈와 BTI의 머신 러닝 모델 (Machine Learning Model for Low Frequency Noise and Bias Temperature Instability)

  • 김용우;이종환
    • 반도체디스플레이기술학회지
    • /
    • 제19권4호
    • /
    • pp.88-93
    • /
    • 2020
  • Based on the capture-emission energy (CEE) maps of CMOS devices, a physics-informed machine learning model for the bias temperature instability (BTI)-induced threshold voltage shifts and low frequency noise is presented. In order to incorporate physics theories into the machine learning model, the integration of artificial neural network (IANN) is employed for the computation of the threshold voltage shifts and low frequency noise. The model combines the computational efficiency of IANN with the optimal estimation of Gaussian mixture model (GMM) with soft clustering. It enables full lifetime prediction of BTI under various stress and recovery conditions and provides accurate prediction of the dynamic behavior of the original measured data.

직접모사법을 이용한 지구 저궤도 파라볼릭 안테나 탑재 위성의 항력 예측 (Prediction of Parabolic Antenna Satellite Drag Force in Low Earth Orbit using Direct Simulation Monte Carlo Method)

  • 신소민;나경수;이주영;조기대
    • 한국항공우주학회지
    • /
    • 제42권7호
    • /
    • pp.616-621
    • /
    • 2014
  • 저궤도에서 운용되는 위성은 대기 저항에 의한 연료소모가 크며, 연료소모는 임무수명 및 발사무게에 영향을 미치게 되어 위성 형상에 따른 항력의 예측이 중요하다. 본 논문에서는 직접모사법을 이용하여 파라볼릭 안테나를 탑재한 저궤도 위성의 임무고도의 변화와 받음각에 따른 항력 및 항력 계수의 변화를 살펴보았다. 저궤도의 희박 기체의 거동을 모사하는 직접모사법의 적용성을 검증하기 위해 스타샤인(Starshine) 위성의 비행데이터를 이용하여 고도, 대기와 표면의 상호작용에 따른 항력 계수를 비교하였다. 결론적으로 계산결과로부터 저궤도 위성의 정밀한 궤도수명 계산에 적합한 항력 계수를 도출하였다.

자동차 방진고무부품 통합설계시스템 개발 (Development of Integrated Design System for Automotive Rubber Components)

  • 우창수;김완두;박현성;신외기
    • Elastomers and Composites
    • /
    • 제47권3호
    • /
    • pp.188-193
    • /
    • 2012
  • 고무부품의 신뢰성을 확보하기 위해서는 피로수명예측 및 평가기술 개발이 중요하다 하겠다. 최근에 고무부품에 대한 고 성능, 고 신뢰성을 위해 설계, 해석 및 평가기술이 요구되고 있으나, 지금까지는 경험과 시행착오적인 방법으로 개발되고 있는 실정이다. 따라서, 본 연구에서는 고무소재에 대해 배합조건, 기계적 특성, 열화 및 피로수명 등을 포함하는 고무소재 물성 데이터베이스를 구축하고, 고무부품의 특성해석 결과를 데이터베이스와 연계하여 고무부품의 피로해석 모델을 개발하였으며, 실제 피로시험 결과를 통하여 개발된 모델의 타당성을 검증하였다.

Life Time Prediction of Rubber Gasket for Fuel Cell through Its Acid-Aging Characteristics

  • Kim, Mi-Suk;Kim, Jin-Hak;Kim, Jin-Kuk;Kim, Seok-Jin
    • Macromolecular Research
    • /
    • 제15권4호
    • /
    • pp.315-323
    • /
    • 2007
  • The present manuscript deals with the prediction of the lifetime of NBR compound based rubber gaskets for use as fuel cells. The material was investigated at 120, 140 and $160^{\circ}C$, with aging times from 3 to 600 h and increasing $H_2SO_4$ concentrations of 5, 6, 7 and 10 vol%. Both material and accelerated acid-heat aging tests were carried out to predict the useful life of the NBR rubber gasket for use as a fuel cell stack. To investigate the effects of acid-heat aging on the performance characteristics of the gaskets, the properties of the NBR rubber, such as crosslink density and elongation at break, were studied. The hardness of the NBR rubber was found to decrease with decreasing acid concentration at both $120\;and\;140^{\circ}C$, but at $160^{\circ}C$, the hardness of the NBR rubber increased abruptly in a very short time at different acid concentrations. The tensile strength and elongation at break were found to decrease with increases in both the $H_2SO_4$ concentration & temperature. The observed experimental results were evaluated using the Arrhenius equation.

평판디스플레이의 대기중 분진농도에 따른 수명예측 시험방법 개발 (Development of Test Method for Flat Panel Display Life Time Prediction during Atmospheric Particle Exposure)

  • 유동현;이건호;최정욱;안강호
    • 반도체디스플레이기술학회지
    • /
    • 제12권4호
    • /
    • pp.45-48
    • /
    • 2013
  • The electronic device, such as flat panel display (FPD), is very important in our life as a means of communication between humans. Liquid crystal display (LCD), which is categorized as a flat panel display, has been used in many display products, especially in TV industry. An LED TV is composed of several electrical components, such as liquid critical module (LCM), analog to digital convertor (AD), power supplier, and inverter board. These modules are very vulnerable to particulate contamination, and causing malfunction or visibility degradation. In this study, we developed a test method for prediction of LCM's lifetime. The test system consists of carbon particle generation flame, dilution system, test chamber, and particle concentration monitoring instrument. Since the carbon particles are the most abundant in the atmosphere and easily absorb light, soot particles are used as a challenging material for this test. The concentration of generated soot particles is set around 4,000,000 #/cc, which is 400 times higher than that of usual atmospheric particles. Through this experiment, we deduced the relationship between the dust concentration and life time of the test specimen.

가스터빈 블레이드용 IN738LC의 열기계피로수명에 관한 연구 (Thermo-Mechancal Fatigue of the Nickel Base Superalloy IN738LC for Gas Turbine Blades)

  • 에릭 플러리;하정수;현중섭;장석원;정훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.188-193
    • /
    • 2000
  • A more accurate life prediction for gas turbine blade takes into account the material behavior under the complex thermo-mechanical fatigue(TMF) cycles normally encountered in turbine operation. An experimental program has been carried out to address the thermo-mechanical fatigue life of the IN738LC nickel-base superalloy. In the first phase of the study, out-of-phase and in-phase TMF experiments have been performed on uncoated and coated materials. In the temperature range investigated. the deposition of NiCrAlY air plasma sprayed coating did not affect the fatigue resistance. In the second phase of the study, a physically-base life prediction model that takes into account of the contribution of different damage mechanisms has been applied. This model was able to reflect the temperature and strain rate dependences of isothermal cycling fatigue lives, and the strain-temperature history effect on the thermo-mechanical fatigue lives.

  • PDF

Leak flow prediction during loss of coolant accidents using deep fuzzy neural networks

  • Park, Ji Hun;An, Ye Ji;Yoo, Kwae Hwan;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2547-2555
    • /
    • 2021
  • The frequency of reactor coolant leakage is expected to increase over the lifetime of a nuclear power plant owing to degradation mechanisms, such as flow-acceleration corrosion and stress corrosion cracking. When loss of coolant accidents (LOCAs) occur, several parameters change rapidly depending on the size and location of the cracks. In this study, leak flow during LOCAs is predicted using a deep fuzzy neural network (DFNN) model. The DFNN model is based on fuzzy neural network (FNN) modules and has a structure where the FNN modules are sequentially connected. Because the DFNN model is based on the FNN modules, the performance factors are the number of FNN modules and the parameters of the FNN module. These parameters are determined by a least-squares method combined with a genetic algorithm; the number of FNN modules is determined automatically by cross checking a fitness function using the verification dataset output to prevent an overfitting problem. To acquire the data of LOCAs, an optimized power reactor-1000 was simulated using a modular accident analysis program code. The predicted results of the DFNN model are found to be superior to those predicted in previous works. The leak flow prediction results obtained in this study will be useful to check the core integrity in nuclear power plant during LOCAs. This information is also expected to reduce the workload of the operators.

도시철도 차륜의 접촉피로 초기수명 평가 (Estimation of Contact Fatigue Initiation Lifetime of an Urban Railway Wheel)

  • 안종곤;유인동;권석진;김호경
    • Tribology and Lubricants
    • /
    • 제28권1호
    • /
    • pp.19-26
    • /
    • 2012
  • Rolling contact fatigue of an urban railway wheel was analysed during its rolling. A FEM analysis was performed using a 3D modelling of rail and wheel, considering the slope of the rail and nonlinear isotropic and kinematic hardening behavior of the rail and the wheel. The maximum von-Mises stress and contact pressure between the rail and wheel were 656.9 MPa and 1111.4 MPa, respectively, under axial load of 85 kN with friction coefficient of 0. The fatigue initiation life prediction relationships by strain-lifetime (${\varepsilon}$-N) and Smith-Watson-Topper method were drawn for the wheel steel as follows: $N_i=7.35{\times}10^6{\times}SWT^{-3.56}$ and $N_i=5.41{\times}10^{-9}{\times}(\frac{{\Delta}{\varepsilon}}{2})^{-5.77}$. The fatigue lifetimes of the wheel due to rolling contact were determined to be infinite by ${\varepsilon}$-N and SWT methods.

철근 부식속도 예측식을 이용한 철근 피복 파괴 시간 추정 (Estimation of Concrete Cover Failure Time Considering the Corrosion Rate in Reinforced Concrete Structures)

  • 장봉석
    • 콘크리트학회논문집
    • /
    • 제18권2호
    • /
    • pp.233-238
    • /
    • 2006
  • 본 연구에서는 염해환경에 노출되어 있는 철근콘크리트 구조물의 수명예측에 있어서 철근덮개 파괴시간 예측을 위하여, 유한요소해석을 통한 방법을 제시하였다. 또한 본 연구에서는 인공세공용액중의 철근 부식속도로부터 콘크리트 중의 철근 부식속도를 유도하는 방법을 제시하였으며, 철근 부식의 분포에 따른 철근덮개의 파괴시간을 비교하여, 철근덮개 파괴시간을 합리적으로 예측하기 위한 방법을 제시하였다. 국부부식을 고려한 경우 균일한 부식을 가정한 경우보다 최대 약 40%정도 철근덮개 파괴시간이 짧아짐을 알 수 있다. 따라서, 철근덮개의 파괴시간 예측을 위한 유한요소해석에 있어서 국부부식을 고려하는 것이 합리적인 결과를 제시할 수 있을 것으로 사료된다.

충격신관 K510용 Zr-Ni계 지연관의 저장수명 예측 (Storage Lifetime Prediction of Zr-Ni Delay System in Fuze K510 for High Explosive Shell)

  • 박병찬;장일호;백승준;손영갑;정은진;황택성
    • 한국군사과학기술학회지
    • /
    • 제12권6호
    • /
    • pp.719-726
    • /
    • 2009
  • A delay system in fuze for high explosive shell is an important safety device, but failure in the delay system usually causes failure of the shell. Root-cause analysis of failure in the delay system is required since failure in over 10-years stored delay system recently occurs. In this paper, failure in the delay system was reproduced experimentally to examine aged characteristics of the delay system, and the failed delay system shows the same characteristics as ones of failed delay systems in field. Based on the reproduced experiments, accelerated life testings and the data analysis of failure times of delay systems were performed to predict the storage lifetime.