KSII Transactions on Internet and Information Systems (TIIS)
/
v.8
no.6
/
pp.2070-2086
/
2014
As a kind of personal lifelog data, activity data have been considered as one of the most compelling information to understand the user's habits and to calibrate diagnoses. In this paper, we proposed a robust algorithm to sampling rates for human activity recognition, which identifies a user's activity using accelerations from a triaxial accelerometer in a smartphone. Although a high sampling rate is required for high accuracy, it is not desirable for actual smartphone usage, battery consumption, or storage occupancy. Activity recognitions with well-known algorithms, including MLP, C4.5, or SVM, suffer from a loss of accuracy when a sampling rate of accelerometers decreases. Thus, we start from particle swarm optimization (PSO), which has relatively better tolerance to declines in sampling rates, and we propose PSO with an adaptive boundary correction (ABC) approach. PSO with ABC is tolerant of various sampling rate in that it identifies all data by adjusting the classification boundaries of each activity. The experimental results show that PSO with ABC has better tolerance to changes of sampling rates of an accelerometer than PSO without ABC and other methods. In particular, PSO with ABC is 6%, 25%, and 35% better than PSO without ABC for sitting, standing, and walking, respectively, at a sampling period of 32 seconds. PSO with ABC is the only algorithm that guarantees at least 80% accuracy for every activity at a sampling period of smaller than or equal to 8 seconds.
글로벌 라이프로그 미디어 클라우드 서비스를 위하여 네트워크 기술, 클라우드 기술 멀티미디어 App 기술 및 하이라이팅 엔진 기술이 요구된다. 본 논문에서는 미디어 클라우드 서비스를 위한 개발 기술 및 서비스 기술 개발 결과를 보였다. 하이라이팅 엔진은 표정인식기술, 이미지 분류기술, 주목도 지도 생성기술, 모션 분석기술, 동영상 분석 기술, 얼굴 인식 기술 및 오디오 분석기술 등을 포함하고 있다. 표정인식 기술로는 Alexnet을 최적화하여 Alexnet 대비 1.82% 우수한 인식 성능을 보였으며 처리속도면에서 28배 빠른 결과를 보였다. 행동 인식 기술에 있어서는 기존 2D CNN 및 LSTM에 기반한 인식 방법에 비하여 제안하는 3D CNN 기법이 0.8% 향상된 결과를 보였다. (주)판도라티비는 클라우드 기반 라이프로그 동영상 생성 서비스를 개발하여 현재 테스트 서비스를 진행하고 있다.
Proceedings of the Korean Society of Computer Information Conference
/
2012.01a
/
pp.7-10
/
2012
본 논문에서는 스마트폰을 이용하여 도로 주행 정보를 기록하고 운전자에게 패턴 별 주행정보를 제공하는 라이프로그(Lifelog) 형태의 서비스에 목적을 두고 있다. 운전자의 도로 주행 데이터를 데이터베이스화한 이 정보는 다양하게 이용될 수 있다. 주행 패턴 인식은 이벤트 구간 검출 과정을 통한 패턴 구간을 검출하고 가속도 센서와 방향 센서, 즉 멀티 센서 기반으로 주행패턴을 인식한다. 주행 패턴을 분석 후 시간 정보를 이용하여 촬영된 영상 데이터에서의 패턴 구간 영상을 같이 제공한다. 이렇게 패턴 구간의 센서 스트리밍 정보와 영상을 제공하면 운전자의 운전 성향 및 주행 기록을 분석하는데 이용될 수 있다. 따라서 주행패턴 인식 알고리즘을 프로토타입으로 제안한다.
Son, Chang-Sik;Choi, Rock-Hyun;Lee, Sang Ho;Yun, Sang Hun;Kang, Won-Seok;Lee, Dong-Ha
Proceedings of the Korea Information Processing Society Conference
/
2015.10a
/
pp.1390-1392
/
2015
최근 다양한 웨어러블 기기의 등장으로 인해, 이종의 라이프로그 정보로부터 개인별 맞춤형 건강관리 서비스를 제공할 수 있는 분석 솔루션의 중요성이 대두되고 있다. 본 연구에서는 이기종의 웨어러블 기기를 통해 수집된 라이프로그 정보를 근간으로 개인의 건강상태를 모니터링하고 분석할 수 있는 웰니스 인포메틱스엔진에 대한 프레임워크를 소개한다. 또한 개발된 인포메틱스엔진의 효과성은 실증시범서비스 기간 동안에 수집된 다양한 라이프로그 정보를 활용하여, 2가지 벤치마크 방법들과의 예측능력을 비교함으로써 그 효과성을 제시한다.
Proceedings of the Korean Society of Computer Information Conference
/
2020.07a
/
pp.205-206
/
2020
노년기를 더욱 의미 있고 창조적으로 보낼 수 있도록 돕는 교육의 필요성이 제기되면서 노년층의 평생교육의 중요성이 강조되고 있다. 평균수명의 연장은 노인의 삶의 질에 대한 사회적 관심을 촉발시켰고 특히, 문화예술관련 평생교육은 노인의 감수성과 삶의 질을 향상시킬 수 있다는 점에서 중요하다. 평생교육은 우리나라에서 2000년 3월부터 시행하였다. 본 연구는 노년층의 문화예술 평생교육기관 만족도에 미치는 영향을 파악하고자 한다. 노년층의 문화예술 평생교육기관의 교육서비스 품질, 행정서비스 품질, 환경 품질 요인에 따라서 이용자들의 만족도에 어떠한 영향을 미치는지 확인하고자 한다. 이러한 연구를 통하여 고령화 사회에서 평생교육이 노인문제해결에 요한 분야가 될 수 있다는 데에 의미를 부여하고 노인평생교육에 한 인식과 질 제고를 한 정책시사를 제공하고자 한다
Over the past few years, user needs in the smartphone application market have been shifted from diversity toward intelligence. Here, we propose a novel cognitive agent that plans the daily routines of users using the lifelog data collected by the smart phones of individuals. The proposed method first employs DPGMM (Dirichlet Process Gaussian Mixture Model) to automatically extract the users' POI (Point of Interest) from the lifelog data. After extraction, the POI and other meaningful features such as GPS, the user's activity label extracted from the log data is then used to learn the patterns of the user's daily routine by POMDP (Partially Observable Markov Decision Process). To determine the significant patterns within the user's time dependent patterns, collaboration was made with the SNS application Foursquare to record the locations visited by the user and the activities that the user had performed. The method was evaluated by predicting the daily routine of seven users with 3300 feedback data. Experimental results showed that daily routine scheduling can be established after seven days of lifelogged data and feedback data have been collected, demonstrating the potential of the new method of place-time-activity coupled daily routine planning systems in the intelligence application market.
This study aimed to propose early diagnosis and management of dementia, which is increasing in aging societies, and suggest commercial utilization strategies by leveraging digital healthcare technologies, particularly lifelog data collected from wearable devices. By introducing new approaches to dementia prevention and management, this study sought to contribute to the field of dementia prediction and prevention. The research utilized 12,184 pieces of lifelog information (sleep and activity data) and dementia diagnosis data collected from 174 individuals aged between 60 and 80, based on medical pathological diagnoses. During the research process, a multidimensional dataset including sleep and activity data was standardized, and various machine learning algorithms were analyzed, with the random forest model showing the highest ROC-AUC score, indicating superior performance. Furthermore, an ablation test was conducted to evaluate the impact of excluding variables related to sleep and activity on the model's predictive power, confirming that regular sleep and activity have a significant influence on dementia prevention. Lastly, by exploring the potential for commercial utilization strategies of the developed model, the study proposed new directions for the commercial spread of dementia prevention systems.
Kim, Byeong-Jun;Kim, Tak-Eun;Lee, Ki-Yong;Kim, Myoung-Ho
Proceedings of the Korean Information Science Society Conference
/
2010.06c
/
pp.84-89
/
2010
최근 스마트폰의 성능이 향상되고 다양한 기능이 추가됨에 따라 기록되는 라이프로그 정보가 급격히 증가하고 있다. 이에 따라 라이프로그를 체계적으로 저장하고 검색하는 일이 중요해지고 있다. 사용자 컨텍스트는 라이프로그 검색의 정확도를 높이기 위한 중요한 요소 중 하나로 논의되어 왔다. 따라서 이를 자동으로 추출하고, 라이프로그의 태깅에 활용하려는 많은 연구가 시도되었다. 그러나 많은 기존 연구들은 컨텍스트를 추출하기 위해 사용자 주변에 센서가 설치되어 있는 환경을 가정하였는데, 이러한 환경은 비용 등의 문제로 일부 제한된 영역에서만 적용 가능하기 때문에, 광범위한 지역에서 사용자의 컨텍스트를 추출할 수 없다는 문제점이 있었다. 본 연구에서는 외부 센서들이 설치된 환경을 가정하지 않고, 스마트폰에 장착된 센서만을 활용하여 사용자의 컨텍스트를 찾아내고, 이를 라이프로그 자동 태깅에 적극 활용하는 방법에 대해 제안한다. 특히 본 연구에서는 기존의 포괄적인 컨텍스트의 정의를 일정 시간 간격동안 지속되는 사용자의 상황으로 한정지어 재정의하고, 이를 라이프로그 태깅에 활용하는 방법에 대해서 논의한다.
Kim, Ji-Eon;Kim, Seung-Jin;No, Si-Hyeong;Jeong, Chang-Won;Kim, Tae-Hoon;Jun, Hong-Yong;Yu, Tae-Yang;Yoon, Kwon-Ha
Proceedings of the Korea Information Processing Society Conference
/
2018.05a
/
pp.236-237
/
2018
최근 생활습관정보는 대사증후군을 진단하기 위한 임상적 진단지표로 중요하게 활용되고 있다. 대사증후군은 심혈관 및 간질환 그리고 당뇨와 같은 여러 합병증을 유발할 수 있는 질환으로 질환 정도에 따른 체계적 관리가 필요하다. 그러나 대사증후군 환자의 생활습관을 수집하기 위한 대부분의 시스템은 자가진단 및 예방 중심의 시스템으로 구성되어 있어 정확한 생활습관을 수집하여 생활습관을 관리하기에는 어려움이 있다. 본 논문에서 제안하는 시스템은 임상적 진단지표에 도움이 될 수 있도록 신뢰성 있는 생활습관 정보를 수집하기 위한 방법을 제시하고 수집된 생활습관정보를 모니터링 하여 환자의 생활습관 개선 여부에 따라 지속적인 피드백을 제공하여 체계적으로 생활습관을 관리할 수 있는 시스템을 제안하고자 한다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2022.05a
/
pp.498-500
/
2022
CCTV protects people and assets safely by identifying dangerous situations and responding promptly. However, it is difficult to continuously monitor the increasing number of CCTV images. For this reason, there is a need for a device that continuously monitors CCTV images and notifies when abnormal behavior occurs. Recently, many studies using artificial intelligence models for image data analysis have been conducted. This study simultaneously learns spatial and temporal characteristic information between image data to classify various abnormal behaviors that can be observed in CCTV images. As an artificial intelligence model used for learning, we propose a multi-classification deep learning model that combines an end-to-end 3D convolutional neural network(CNN) and ResNet.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.