• 제목/요약/키워드: Life-cycle Assessment (LCA)

검색결과 308건 처리시간 0.032초

Trends and Interpretation of Life Cycle Assessment (LCA) for Carbon Footprinting of Fruit Products: Focused on Kiwifruits in Gyeongnam Region (과수의 탄소발자국 표지를 위한 LCA 동향 및 해석: 경남지역 참다래를 중심으로)

  • Deurer, Markus;Clothier, Brent;Huh, Keun-Young;Jun, Gee-Ill;Kim, In-Hea;Kim, Dae-Il
    • Horticultural Science & Technology
    • /
    • 제29권5호
    • /
    • pp.389-406
    • /
    • 2011
  • As part of a feasibility study for introducing carbon labeling of fruit products in Korea, we explore the use of carbon footprints for Korean kiwifruit from Gyeongnam region as a case study. In Korea, the Korean Environmental Industry and Technology Institute (KEITI) is responsible for the carbon footprint labeling certification, and has two types of certification programs: one program focuses on climate change response (carbon footprint labeling analysis) and the other on low-carbon products (reduction of carbon footprints analysis). Currently agricultural products have not yet been included in the program. Carbon labeling could soon be a prerequisite for the international trading of agricultural products. In general the carbon footprints of various agricultural products from New Zealand followed the methodology described in the ISO standards and conformed to the PAS 2050. The carbon footprint assessment focuses on a supply chain, and considers the foreground and the background systems. The basic scheme consists of four phases, which are the 'goal', 'scope', 'inventory analysis', and 'interpretation' phases. In the case of the carbon footprint of New Zealand kiwifruit the study tried to understand each phase's contribution to total GHG emissions. According to the results, shipping, orchard, and coolstore operation are the main life cycle stages that contribute to the carbon footprint of the kiwifruit supply chain stretching from the orchard in New Zealand to the consumer in the UK. The carbon emission of long-distance transportation such as shipping can be a hot-spot of GHG emissions, but can be balanced out by minimizing the carbon footprint of other life cycle phases. For this reason it is important that orchard and coolstore operations reduce the GHG-intensive inputs such as fuel or electricity to minimize GHG emissions and consequently facilitate the industry to compete in international markets. The carbon footprint labeling guided by international standards should be introduced for fruit products in Korea as soon as possible. The already established LCA methodology of NZ kiwifruit can be applied for fruit products as a case study.

LCA (Life Cycle Assessment) for Evaluating Carbon Emission from Conventional Rice Cultivation System: Comparison of Top-down and Bottom-up Methodology (관행농 쌀 생산체계의 탄소배출량 평가를 위한 전과정평가: top-down 방식의 국가평균값과 bottom-up 방식의 사례분석값 비교)

  • Ryu, Jong-Hee;Jung, Soon Chul;Kim, Gun-Yeob;Lee, Jong-Sik;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • 제45권6호
    • /
    • pp.1143-1152
    • /
    • 2012
  • We established a top-down methodology to estimate carbon footprint as national mean value (reference) with the statistical data on agri-livestock incomes in 2007. We also established LCI (life cycle inventory) DB by a bottom-up methodology with the data obtained from interview with farmers from 4 large-scale farms at Gunsan, Jeollabuk-do province to estimate carbon footprint in 2011. This study was carried out to compare top-down methodology and bottom-up methodology in performing LCA (life cycle assessment) to analyze the difference in GHGs (greenhouse gases) emission and carbon footprint under conventional rice cultivation system. Results of LCI analysis showed that most of $CO_2$ was emitted during fertilizer production and rice cultivation, whereas $CH_4$ and $N_2O$ were mostly emitted during rice cultivation. The carbon footprints on conventional rice production system were 2.39E+00 kg $CO_2$-eq. $kg^{-1}$ by top-down methodology, whereas 1.04E+00 kg $CO_2$-eq. $kg^{-1}$ by bottom-up methodology. The amount of agro-materials input during the entire rice cultivation for the two methodologies was similar. The amount of agro-materials input for the bottom-up methodology was sometimes greater than that for top-down methodology. While carbon footprint by the bottom-up methodology was smaller than that by the top-down methodology due to higher yield per cropping season by the bottom-up methodology. Under the conventional rice production system, fertilizer production showed the highest contribution to the environmental impacts on most categories except GWP (global warming potential) category. Rice cultivation was the highest contribution to the environmental impacts on GWP category under the conventional rice production system. The main factors of carbon footprints under the conventional rice production system were $CH_4$ emission from rice paddy field, the amount of fertilizer input and rice yield. Results of this study will be used for establishing baseline data for estimating carbon footprint from 'low carbon certification pilot project' as well as for developing farming methods of reducing $CO_2$ emission from rice paddy fields.

Analysis of Environmental Impacts using LCA for the Carcass Burial (전과정평가를 활용한 가축매몰지의 환경영향 분석)

  • Kim, Mi Hyung;Kim, Geon Ha
    • Journal of Korean Society on Water Environment
    • /
    • 제29권2호
    • /
    • pp.239-246
    • /
    • 2013
  • The foot and mouth disease and AI were highly contagious. The virus can be transmitted in a number of ways, including close-contact animal to animal spread, long-distance aerosol spread and fomites, or inanimate objects, typically fodder and motor vehicles. A lot of burial sites were constructed in a short time for preventing the rapid spread of the virus. The carcass burial sites have a risk potential because the sites were constructed without any appropriate and systematic management. It resulted from lacking of time, equipments and man power. The carcass burial sites more than 4,700 constructed in 2011. Approximately 7 million poultry and 3.5 million livestock including head of cattle and swine were buried in farm land. It is time to be concerned if the secondary pollutions occur from the burial sites. The environmental impacts should be analyzed for managing the burial sites effectively and minimizing damages and risks to the environment and human health. This study was to analyze environmental impacts of the process of carcass burial construction using a life cycle assessment methodology. All input data of raw materials and energy usage were collected and the inventory was constructed. The results showed that 1 ton of carcass burial of the environmental impacts were $0.51yr^{-1}$ for ADP, 0.09 kg of 1,4DCB-eq for FAETP, 31.17 kg of $CO_2-eq$ for GWP, 0.04 kg of $C_2H_4-eq$ for POCP, 0.06 kg of $SO_2-eq$ for AP.

Environmental Impact Evaluation on Landfill Treatment of Petro-Chemical Wastewater Sludge by Life Cycle Assessment (전과정평가를 이용한 석유화학 폐수처리슬러지의 매립처리에 대한 환경영향평가)

  • Kim, Hyeong-Woo;Park, Hung-Suck
    • Journal of Korean Society of Environmental Engineers
    • /
    • 제38권11호
    • /
    • pp.589-595
    • /
    • 2016
  • This study evaluated the environmental impacts for landfill treatment of the wastewater treatment sludge (WTS) from petrochemical firms by life cycle assessment (LCA) and reviewed the impact reduction by landfill gas (LFG) utilization. The functional unit was 'landfill of 1 ton of WTS', and the system boundary included the process of input and treatment for WTS in landfill site. The impacts were high at landfill process (LP) and leachate treatment process (LTP). Global warming (GWP) and photochemical oxidants creation (POCP) were high at LP, while abiotic depletion (ADP), acidification (AP), eutrophication (EP), ozone depletion (ODP) were high at LTP. The major substances of various impact categories were crude oil (ADP), $NO_X$ (AP, EP), $CH_4$ (GWP, POCP), $Cl_2$ (ODP), respectively. The major factor of ADP, AP, EP was attributed from the generation of electricity used in LTP, and the methane within uncollected LFG was main factor of GWP and POCP. Therefore, electricity consumption reduction is identified to be an impact improvement option, and the flaring system installation or enhanced LFG recovery could be an alternative to reduce impacts. Among the various categories, GWP accounted the highest impact (${\geq}90%$) followed by ADP, POCP. In the avoidance impact resulted from the utilization of LFG, to substitute B-C oil or LNG showed the impact reduction of 32.7% and 12.0%, respectively.

Eco-Efficiency Assessment of the Recycling Process in Resources Recycling Center (자원재활용센터의 재활용 공정에 대한 생태효율성 평가)

  • KIM, Tae-Seok;KIM, Dong-Gyue;CHUNG, Yong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • 제27권6호
    • /
    • pp.1812-1821
    • /
    • 2015
  • In this study, we evaluate the eco-efficiency for recycling processes of Busan Resources Recycling Center for each year from 2010-2012. It analyze the impact of global warming on the power consumption by Life Cycle Assessment. Also calculate the economic value by net profit components those are sales amount and electric charge in accordance with the process operation. On the basis of these results, each of the eco-efficiency Factor analysis and dynamics analysis of 2011 and 2012 as the base year to 2010 are performed. As a result, the impact of global warming in all the recycling processes is increased by increasing power consumption 2010-2012. But net profit is decreased. In addition, the eco-efficiency of all the recycling processes is decreased and analysis result of the eco-efficiency trends is located on the Fully non Eco-efficiency (--) level. Therefore, all the recycling processes are necessary improvement for power consumption reducing and net profit increasing to further the environmental and economically sustainable direction.

A Study on Analyzing the Factors Affecting Environmental Loads in the Planning Stage of Korean National Highway Projects

  • Park, Jin-Young;Park, June-Seok;Kim, Myeong-Jin;Kim, Sang-Ryong;Kim, Byung-Soo
    • International conference on construction engineering and project management
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.508-512
    • /
    • 2015
  • Carbon emission calculation guidelines provided by the Korean Ministry of Land, Infrastructure and Transportation (MOLIT) and existing environmental load assessment studies have suggested a method for estimating based on the volume determined after the design development. Therefore they are not being helpful in the decision making of the environmental economics of road facilities in the planning stage in which specific information on construction output volume is lacking. Based on literature analysis of existing studies and consultation from a group of construction environmental professionals, 12 types of property information considered to be related to environmental load were selected from an inventory of information that will be available in the road planning stage. In addition, multiple regression analysis was performed based on the environmental load computed through the life cycle assessment (LCA) of 40 national highway project cases of Korea to deduce five impact factors of environmental load in the road facilities planning stage.

  • PDF

Current Status of Plastic Recycling in Korea (국내 플라스틱 리싸이클링 현황)

  • Lee, Sang-hun
    • Resources Recycling
    • /
    • 제28권6호
    • /
    • pp.3-8
    • /
    • 2019
  • Recently, plastic waste in Korea has been recognized as a critical issue due to an increase in massive production of plastics, difficulty in disposal of waste plastics, and public recognition of toxicity in micro-plastics, etc. To resolve those problems, the regulation to reduce plastics consumption may be primarily considered but, in this case, clarification should be made on the rationales and the action plans in the regulation for individual waste plastic items. Another problem is the small capital sizes of domestic recycling companies, which leads to poor R&D capacity, low recycling yields and thus lowering values of recycling items. This adversely affects consumers' perception. The R&D toward recycling technical progress should take into account the environmental friendliness and recyclability from the early product design stages. Certainly, this should be supported in governmental policy and public action plans. In addition, by referring to advanced policies of i.e. European Union, the recycling industry should be recognized as an opportunity toward new investment & employment. If necessary, the regulation of plastic consumption through a formal evaluation process such as Life Cycle Assessment (LCA) will also be helpful. The values of recycled plastics should be improved through the identification and elimination of harmful chemical substances potentially contained in the products.

Life Cycle Assessment (LCA) for Calculation of the Carbon Emission Amount of Organic Farming Material -With Emphasis on Hardwood Charcoal, Grass Liquid and Microbial Agents- (유기농자재의 탄소배출량 산정을 위한 전과정평가(LCA) -참숯, 목초액, 미생물제재를 중심으로-)

  • Yoon, Sung-Yee;Son, Bo-Hong
    • Korean Journal of Organic Agriculture
    • /
    • 제20권3호
    • /
    • pp.297-311
    • /
    • 2012
  • Since 1997, Korean Ministry of Knowledge Economy and Ministry of Environment have established data on some 400 basic raw and subsidiary materials and process like energy, petro-chemical, steel, cement, glass, paper, construction materials, transportation, recycling and disposal etc by initiating establishment of LCI database. Regarding agriculture, Rural Development Administration has conducted establishment of LCI database for major farm products like rice, barley, beans, cabbage and radish etc from 2009, and released that they would establish LCI database for 50 items until 2020 later on. The domestic LCI database for seeds, seedling, agrochemical, inorganic fertilizer and organic fertilizer etc is only at initial stage of establishment, so overseas LCI databases are brought and being used. However, since the domestic and overseas natural environments differ, they fall behind in reliability. Therefore, this study has the purpose to select organic farming materials, survey the production process for various types of organic farming materials and establish LCI database for the effects of greenhouse gas emitted during the process in order to select carbon basic units for agricultural production system compliant in domestic situation instead of relying on overseas data and apply life cycle assessment of greenhouse gas emitted by each crop during the process. As for selecting methods, in this study organic farming materials were selected in the method of direct observation of material and bottom-up method a survey method with focus on the organic farming materials admitted into rice production. For the basic unit of carbon emission amount by the production of 1kg of organic farming material, the software PASS 4.1.1 developed by Korea Accreditation Board under Ministry of Knowledge Economy was used. The study had the goal to ultimately provide basic unit to calculate carbon emission amount in executing many institutions like goal management system and carbon performance display system etc in agricultural sector to be conducted later on. As a result, emission basic units per 1kg of production were calculated to be 0.0088kg-$CO_2$ for charcoal, 0.1319kg-$CO_2$ for grass liquid, and 0.2804kg-$CO_2$ for microbial agent.

Evaluation of Hydrogen Properties on Mg2NiHx-Graphene Composites by Mechanical Alloying (기계적 합금화법으로 제조한 Mg2NiHx-Graphene 복합재료의 수소화 특성 평가)

  • Lee, Young-Sang;Lee, Soo-Sun;Lee, Byung-Ha;Jung, Seok;Hong, Tae-Whan
    • Journal of Hydrogen and New Energy
    • /
    • 제25권1호
    • /
    • pp.19-27
    • /
    • 2014
  • Mg hydride has a high hydrogen capacity (7.6%), at high temperature, and is a lightweight and low cost material, thus it a promising hydrogen storage material. However, its high operation temperature and very slow reaction kinetics are obstacles to practical application. In order to overcome these disadvantages of Mg hydride, graphene powder was added to it. The addition of graphene has been shown to reduce the operating temperature of dehydrogenation. Moreover, in this report the environmental aspects of $MgH_x$-Graphene composites are investigated by means of the environmental life cycle assessment (LCA) method. $MgH_x$-Graphene mixture was prepared by hydrogen induced mechanical alloy (HIMA). The synthesized powder was characterized by XRD(X-ray Diffraction). The hydrogenation behaviors were evaluated by using a Sievert's type automatic PCT apparatus. Such evaluation of Materials also conducted in the LCA. From the result of P-C-T(Pressure-Composition-Temperature) curves, the $MgH_x$-3wt.% graphene composite was evaluated as having a 5.86wt.% maximum hydrogen storage capacity, at 523K. From absorption kinetic testing, the $MgH_x$-7wt.% graphene composite was evaluated as having a maximum 6.94wt.%/ms hydrogen absorption rate, at 573K. Environment evaluation results for the $MgH_x$-graphene composites and other materials indicated environmental impact from the electric power used and from the materials themselves.

Study of the Recycling Policy to Make Efficient Resource-recycling Society (효율적(效率的)인 자원순환사회 형성을 위한 자원재활용(資源再活用) 정책 고찰(考察))

  • Ryu, Su-Ho
    • Resources Recycling
    • /
    • 제18권2호
    • /
    • pp.3-15
    • /
    • 2009
  • To accomplish the greenhouse gas reduction which is over core unit project of the "Green growth" policy and "Resource circulation society", it is important to maintain proper balance and complement between energy recovery from waste and material recycling. This research(study) examined the related policies on the past of korea and foreign country, and also "The 4th resource recycling master plan" and "Energy recovery from waste plan" to provide advisable direction for resource recycling policy. The results of the research(study) showed that there were no significant difference between korea and developed foreign countries waste management policies. But in German policy, energy recovery from waste and pre-treatment are importantly considered and highly required for permission. Under current circumstance in korea, recycling will be more difficult than in the past. According to "The 4th resource recycling master plan", film type of synthetic resin was not sustainable recycled material in substance."Energy recovery from waste plan", proved that the energy recovery from RDF/RPF have lower efficiency than regular incineration generation and substance recycling. To solve these problems, the energy and remainder heat recovery must be generalized to "Energy recovery" concept and institutional improvement such as LCA(Life Cycle Assessment) system are need to support it. And also technology development to extract synthetic polymer by dissolved film type of synthetic resin must be provided.