• Title/Summary/Keyword: Life safety requirements

Search Result 164, Processing Time 0.026 seconds

Establishment of accreditation criteria for nutrition and dietary education materials (영양.식생활 교육자료의 인증 심사기준 개발 연구)

  • Lee, Kyoung Ae;Kim, Ji-Myung;Park, Yoo Kyoung;Lee, Kyung-Hea;Oh, Sang Woo;Lee, Hee Seung
    • Journal of Nutrition and Health
    • /
    • v.46 no.5
    • /
    • pp.470-481
    • /
    • 2013
  • This study provides standardized scientific criteria for education materials on nutrition and diet that could be used in schools, workplaces, and health and medical facilities. The study was conducted from April 2011 to October 2011. Literature reviews, institutional visits, and telephone interviews were conducted for the first draft of the accreditation criteria. Expert meeting and advisory councils were conducted in order to obtain feedback after development of the first draft of accreditation criteria. In order to verify the validity and reliability of the first draft on certification criteria, a survey was sent out to 143 professionals, including professors, researchers, health and medical experts, teachers, nutrition teachers, dietitians, and clinical nutritionists. After several modifications, the final accreditation criteria were established for 1) printed materials (authority, credibility, objectivity, organization, editing, real-life usability, activities and participation, and public interest), 2) web-sites (authority, credibility, objectivity, design, real-life usability, accessibility, currency, and public interest) and 3) materials with activities (credibility, organization, design, convenience of utilizing, safety, and public interest). Out of several criteria, contents (authority, credibility. and objectivity) and publicity (public interest) areas are mandatory requirements. For the accreditation, books for learning and materials with activities are required to meet more than six evaluation components, and the other materials are required to meet more than five evaluation components, including the required area. Accreditation criteria developed in this study could be used as a standard for development or selection of good education materials for nutrition and dietary life.

A Study on Manufacturing Techniques and Expected Effects for SR001 (SR001 제작기법 및 기대효과에 관한 연구)

  • Lee, Duk-Gyu;Shin, Kun-Young;Kim, Il-Hwan;Seo, Seog-Chul;Park, Jong-Hun;Kim, Ki-Chun
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2987-2997
    • /
    • 2011
  • As a public transit playing an important role in the era of high gas prices, subway corresponds the national strategy 'Low carbon, Green growth'; accordingly, passengers who would use the transportation are steadily increasing. Subway operators are required to provide subway users with services based on higher-quality system, safety, convenience & high reliability level. Furthermore, as the legally allowed maximum life time of EMUs is extended, it is necessary to localize & standardize the parts of EMUs. This paper presents a modelling of systematic EMU(SR001) manufacturing technique which enables us to reflect passenger and subway operator's demands in the whole EMU manufacturing process from the initial design phase to its completion by making full use of the know-how based on subway operators' experiences. SR001 enabled SMRT's staffs to participate in the EMU design & its equipment manufacturing; consequently, it realized the innovative system which meets passengers' requirements. Moreover, the process lead time was reduced dramatically. The result of this research will be helpful in providing useful guidelines for railway industry policy and development making in Korea.

  • PDF

Load Test Method of Vehicle Body and Bogie Frame for Urban Maglev Vehicle (도시형 자기부상열차의 차체 및 대차프레임 하중시험방법)

  • Han, Jeong-Woo;Kim, Jae-Dong;Huh, Young-Cheol;Han, Sung-Wook;Kim, Beom-Soo
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.924-930
    • /
    • 2011
  • Maglev vehicle has two parts a vehicle body and a series of bogies. The vehicle body is connected through a pneumatic suspension on the bogie frame operating loads, vehicle weight and passengers, repeatedly during the service life. The bogie frame plays an important role in sustaining the weight of the vehicle body and controlling the magnets in the correct alignment to meet requirements of stable running on railway. It is also subjected to the levitation and guidance force and propulsion force generated by electromagnets and linear induction motor (LIM) respectively. To guarantee a vehicle system, it is necessary to identify a load test method with proper loads that the vehicle is expected to experience while in service. In this paper, a test method was proposed to verify the structural safety of vehicle body and bogie frame that are applied to an EMS(electromagnetic suspension)-type urban Maglev vehicle considering in case of not only running on the ground but also levitated running.

  • PDF

Dynamic Stress Analysis of Vehicle Frame Using a Nonlinear Finite Element Method

  • Kim, Gyu-Ha;Cho, Kyu-Zong;Chyun, In-Bum;Park, Seob
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1450-1457
    • /
    • 2003
  • Structural integrity of either a passenger car or a light truck is one of the basic requirements for a full vehicle engineering and development program. The results of the vehicle product performance are measured in terms of durability, noise/vibration/harshness (NVH), crashworthiness and passenger safety. The level of performance of a vehicle directly affects the marketability, profitability and, most importantly, the future of the automobile manufacturer. In this study, we used the Virtual Proving Ground (VPG) approach for obtaining the dynamic stress or strain history and distribution. The VPG uses a nonlinear, dynamic, finite element code (LS-DYNA) which expands the application boundary outside classic linear, static assumptions. The VPG approach also uses realistic boundary conditions of tire/road surface interactions. To verify the predicted dynamic stress and fatigue critical region, a single bump run test, road load simulation, and field test have been performed. The prediction results were compared with experimental results, and the feasibility of the integrated life prediction methodology was verified.

An Optimum Design of Secondary Battery Using Design of Experiments with Mixture (혼합물실험계획법을 이용한 2차전지의 최적설계)

  • Kim, Seong-Jun;Park, Jong-In
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.983-989
    • /
    • 2005
  • Secondary batteries with high performance are essential in widespread use of modern portable devices such as cellular phones and laptop computers. High energy density, long cycle life, and safety are some of important requirements for secondary battery. To achieve such characteristics, a mixing proportion of electrolyte solution ingredients in the battery should be carefully chosen. In this paper, using statistical design of mixture experiments (DOME), we attempt to find an optimum condition of designing the secondary battery. DOME has a distinct feature in that the experimental region is represented by simplex, rather than hypercube, because the sum of blend proportions should be unity. Several designs based upon this point have been proposed for mixture experiments. Among them, an extreme vertices design is employed in this paper because there are a couple of blend constraints to be considered. In order to investigate how the mixing proportion interacts with other manufacturing factors, a fractional factorial design is also included across the extreme vertices design. As a result, we find that the blend proportion of solution ingredients has a significant effect on battery performances. By simultaneously optimizing two battery capacities, this paper proposes an optimum blend proportion according to process factor settings.

  • PDF

An Optimum Design of Secondary Battery using Design of Experiments with Mixture (혼합물 실험계획법을 이용한 이차전지의 최적설계)

  • Kim, Seong-Jun;Park, Jong-In
    • IE interfaces
    • /
    • v.18 no.4
    • /
    • pp.402-411
    • /
    • 2005
  • Secondary batteries with high performance are essential in widespread use of modern portable devices such as cellular phones and laptop computers. High energy density, long cycle life, and safety are some of important requirements for secondary battery. To achieve such characteristics, a mixing proportion of electrolyte solution ingredients in the battery should be carefully chosen. In this paper, using statistical design of mixture experiments (DOME), we attempt to find an optimum condition of designing the secondary battery. DOME has a distinct feature in that the experimental region is represented by simplex, rather than hypercube, because the sum of blend proportions should be unity. Several designs based upon this point have been proposed for mixture experiments. Among them, an extreme vertices design is employed in this paper because there are a couple of blend constraints to be considered. In order to investigate how the mixing proportion interacts with other manufacturing factors, a fractional factorial design is also included across the extreme vertices design. As a result, we find that the blend proportion of solution ingredients has a significant effect on battery performances. By simultaneously optimizing two battery capacities, this paper proposes an optimum blend proportion according to process factor settings.

Fatigue Strength Evaluation of Bogie Frame for Power Car (동력차용 대차프레임의 피로강도평가)

  • Lee, Hak-Ju;Han, Seung-U;Augagneur Sylvain;Lee, Sang-Rok
    • 연구논문집
    • /
    • s.27
    • /
    • pp.57-73
    • /
    • 1997
  • The bogie between the track and the railway vehicle body, is one of the most important component in railroad vehicle. Its effects on the safety of both passengers and vehicle itself, and on the overall performance of the vehicle such as riding quality, noise and vibration are critical. The bogie is mainly consisted of the bogie frame, suspensions, wheels and axles, braking system, and transmission system. The complex shapes of the bogie frame and the complicate loading condition (both static and dynamic) induced in real operation make it difficult to design the bogie frame fulfilling all the requirements. The complicated loads applied to the bogie frame are i) static load due to the weight of the vehicle and passengers, ii) quasi-static load due to the rolling in curves iii) dynamic load due to the relative motion between the track, bogie, and vehicle body. In designing the real bogie frame, fatigue analysis based on the above complicated loading conditions is a must. In this study, stress analysis of the bogie frame has been performed for the various loading conditions according to the UIC Code 6 15-4. Magnitudes of the stress amplitude and mean stress were estimated based on the stress analysis results to simulate the operating loads encountered in service. Fatigue strength of the bogie frame was evaluated by using the constant life diagram of the material. 3-D surface modelling, finite element meshing, and finite element analysis were performed by Pro-Engineer, MSC/PATRAN, and MSC/NASTRAN, respectively.

  • PDF

Shear stress indicator to predict seismic performance of residential RC buildings

  • Tekeli, Hamide;Dilmac, Hakan;Demir, Fuat;Gencoglu, Mustafa;Guler, Kadir
    • Computers and Concrete
    • /
    • v.19 no.3
    • /
    • pp.283-291
    • /
    • 2017
  • A large number of residential buildings in regions subjected to severe earthquakes do not have enough load carrying capacity. The most of them have been constructed without receiving any structural engineering attention. It is practically almost impossible to perform detailed experimental evaluation and analytical analysis for each building to determine their seismic vulnerability, because of time and cost constraints. This fact points to a need for a simple evaluation method that focuses on selection of buildings which do not have the life safety performance level by adopting the main requirements given in the seismic codes. This paper deals with seismic assessment of existing reinforced concrete residential buildings and contains an alternative simplified procedure for seismic evaluation of buildings. Accuracy of the proposed procedure is examined by taking into account existing 250 buildings. When the results of the proposed procedure are compared with those of the detailed analyses, it can be seen that the results are quite compatible. It is seen that the accuracy of the proposed procedure is about 80% according to the detailed analysis results of existing buildings. This accuracy percentage indicates that the proposed procedure in this paper can be easily applied to existing buildings to predict their seismic performance level as a first approach before implementing the detailed and complex analyses.

Reliability Analysis of Axially Loaded Large-scale Pile Foundations (대형말뚝기초의 축하중 거동에 대한 수치해석기반 신뢰성 해석)

  • Huh, Jung-Won;Park, Jae-Hyun;Lee, Ju-Hyung;Ha, Sung-Han;Kwak, Ki-Seok;Chung, Moon-Kyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.17-22
    • /
    • 2009
  • Reliability analyses were performed to quantify the risk in axially loaded large-scale pile foundations in consideration of pile-soil interaction and uncertainties on various design variables. The finite difference method based on an equivalent soil spring model and a load transfer method and Monte Carlo simulation method are integrated in the framework of reliabilty analysis. The applicability and efficiency of the proposed method in the safety assessment of axially loaded pile-soil system was verified using a realistic example. Since the proposed method can explicitly consider uncertainties in various design variables, and quantify failure probability of a pile foundation, it can be used to estimate risk, to obtain basic informations for life cycle cost analysis, and to develop code requirements for a reliability-based design of pile foundations.

  • PDF

A Study on the Damage Design of Military Aircraft Structure Material by Armor Piercing Bullet Hit (철갑탄 피격에 의한 군용 항공기 구조재료의 손상설계에 관한 연구)

  • Hur, Jang-Wook;Hyun, Young-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.1051-1057
    • /
    • 2010
  • Database for the damage reference by armor piercing bullet test was established for both tube and plate specimens having a range of thickness. As the inclined angles of hit are increasing, it has been found that penetration damage diameter tends to increases accordingly in both specimen of the tube and plate, and such penetration damage diameter on the rear side becomes bigger than those on the front side. The tube specimen showed that the damage becomes bigger when central areas rather than the peripheral were hit. Through the plate test, it also has been found that the penetration ballistic limit for Al alloy is about 25.4mm and that of stainless steel about 12.7mm. From the fatigue analysis results using the database for damage reference, it has been identified whether the safety requirements of military aircraft could be met.