• Title/Summary/Keyword: Life cycle impact analysis

Search Result 201, Processing Time 0.023 seconds

Applying a Life-Cycle Assessment to the Ultra Pure Water Process of Semiconductor Manufacturing

  • Tien, Shiaw-Wen;Chung, Yi-Chan;Tsai, Chih-Hung;Yang, Yung-Kuang;Wu, Min-Chi
    • International Journal of Quality Innovation
    • /
    • v.6 no.3
    • /
    • pp.173-189
    • /
    • 2005
  • A life-cycle assessment (LCA) is based on the attention given to the environmental protection and concerning the possible impact while producing, making, and consuming products. It includes all environmental concerns and the potential impact of a product's life cycle from raw material procurement, manufacturing, usage, and disposal (that is, from cradle to grave). This study assesses the environmental impact of the ultra pure water process of semiconductor manufacturing by a life-cycle assessment in order to point out the heavy environmental impact process for industry when attempting a balanced point between production and environmental protection. The main purpose of this research is studying the development and application of this technology by setting the ultra pure water of semiconductor manufacturing as a target. We evaluate the environmental impact of the Precoat filter process and the Cation/Anion (C/A) filter process of an ultra pure water manufacturing process. The difference is filter material used produces different water quality and waste material, and has a significant, different environmental influence. Finally, we calculate the cost by engineering economics so as to analyze deeply the minimized environmental impact and suitable process that can be accepted by industry. The structure of this study is mainly combined with a life-cycle assessment by implementing analysis software, using SimaPro as a tool. We clearly understand the environmental impact of ultra pure water of semiconductor used and provide a promotion alternative to the heavy environmental impact items by calculating the environmental impact during a life cycle. At the same time, we specify the cost of reducing the environmental impact by a life-cycle cost analysis.

An Analysis of Potential Environmental Impact Reduction for Combined Sewer Overflow Project using a LCA Methodology (LCA 기법을 활용한 합류식 하수도 월류수 사업의 잠재적 환경영향 저감효과 분석)

  • Jo, Hyun-Jung;Song, Jang-Hwan;Hwang, Yong-Woo;Park, Ji-Hyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.6
    • /
    • pp.885-892
    • /
    • 2011
  • In this study, LCA(Life Cycle Assessment) on 'Saemangum CSO Project' was carried out to evaluate environmental impact which occurred during the construction and operation periods and the potential environmental impact reduction was analyzed by comparing production and reduction level of pollution loads. LCA was conducted out according to the procedure of ISO14040 which suggested Goal and Scope Definition, Life Cycle Inventory Analysis, Life Cycle Impact Assessment and Interpretation. In the Goal and Scope Definition, the functional unit was 1 m3 of CSO, the system boundary was construction and operation phases, and the operation period was 20 years. For the data collection and inventory analysis, input energies and materials from civil, architecture, mechanical and electric fields are collected from design sheet but the landscape architecture field is excepted. LCIA(Life Cycle Impact Assessment) was performed following the procedure of Eco-Labelling Type III under 6 categories which were resource depletion, eutrophication, global warming, ozone-layer destruction, and photochemical oxide formation. In the result of LCA, 83.4% of environmental impact occurred in the construction phase and 16.6% in the operation phase. Especially 78% of environmental impact occurred in civil works. The Global warming category showed the highest contribution level in the environmental impact categories. For the analysis on potential environmental impact reduction, the reduction and increased of environmental impact which occurred on construction and operation phases were compared. In the case of considering only the operation phase, the result of the comparison showed that 78% of environmental impact is reduced. On the other hand, when considering both the construction and operation phases, 50% of environmental impact is increase. Therefore, this study showed that eco-friendly material and construction method should be used for reduction of environmental impact during life cycle, and it is strongly necessary to develop technology and skills to reduce environmental impact such as renewable energies.

Environmental Impact Evaluation for Glass Bottle Recycle using Life Cycle Assessment (LCA를 이용한 유리병 재활용의 환경영향 평가)

  • Baek, Seung-Hyuk;Kim, Hyung-Jin;Kwon, Young-Shik
    • Journal of Environmental Science International
    • /
    • v.23 no.6
    • /
    • pp.1067-1074
    • /
    • 2014
  • Life Cycle Assessment(LCA) has been carried out to evaluate the environmental impacts of glass bottle recycle. The LCA consists of four stages such as Goal and Scope Definition, Life Cycle Inventory(LCI) Analysis, Life Cycle Impact Assessment(LCIA), and Interpretation. The LCI analysis showed that the major input materials were water, materials, sand, and crude oil, whereas the major output ones were wastewater, $CO_2$, and non-hazardous wastes. The LCIA was conducted for the six impact categories including 'Abiotic Resource Depletion', 'Acidification', 'Eutrophication', 'Global Warming', 'Ozone Depletion', and 'Photochemical Oxidant Creation'. As for Abiotic Resource Depletion, Acidification, and Photochemical Oxidant Creation, Bunker fuel oil C and LNG were major effects. As for Eutrophication, electricity and Bunker fuel oil C were major effects. As for Global Warming, electricity and LNG were major effects. As for Ozone Depletion, plate glasses were major effects. Among the six categories, the biggest impact potential was found to be Global Warming as 97% of total, but the rest could be negligible.

Approximate Life Cycle Assessment of Product Concepts Using Multiple Regression Analysis and Artificial Neural Networks

  • Park, Ji-Hyung;Seo, Kwang-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1969-1976
    • /
    • 2003
  • In the early phases of the product life cycle, Life Cycle Assessment (LCA) is recently used to support the decision-making for the product concepts, and the best alternative can be selected based on its estimated LCA and benefits. Both the lack of detailed information and time for a full LCA for a various range of design concepts need a new approach for the environmental analysis. This paper explores a new approximate LCA methodology for the product concepts by grouping products according to their environmental characteristics and by mapping product attributes into environmental impact driver (EID) index. The relationship is statistically verified by exploring the correlation between total impact indicator and energy impact category. Then, a neural network approach is developed to predict an approximate LCA of grouping products in conceptual design. Trained learning algorithms for the known characteristics of existing products will quickly give the result of LCA for newly designed products. The training is generalized by using product attributes for an EID in a group as well as another product attributes for the other EIDs in other groups. The neural network model with back propagation algorithm is used, and the results are compared with those of multiple regression analysis. The proposed approach does not replace the full LCA but it would give some useful guidelines for the design of environmentally conscious products in conceptual design phase.

Approximate Life Cycle Assessment of Classified Products using Artificial Neural Network and Statistical Analysis in Conceptual Product Design (개념 설계 단계에서 인공 신경망과 통계적 분석을 이용한 제품군의 근사적 전과정 평가)

  • 박지형;서광규
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.221-229
    • /
    • 2003
  • In the early phases of the product life cycle, Life Cycle Assessment (LCA) is recently used to support the decision-making fer the conceptual product design and the best alternative can be selected based on its estimated LCA and its benefits. Both the lack of detailed information and time for a full LCA fur a various range of design concepts need the new approach fer the environmental analysis. This paper suggests a novel approximate LCA methodology for the conceptual design stage by grouping products according to their environmental characteristics and by mapping product attributes into impact driver index. The relationship is statistically verified by exploring the correlation between total impact indicator and energy impact category. Then a neural network approach is developed to predict an approximate LCA of grouping products in conceptual design. Trained learning algorithms for the known characteristics of existing products will quickly give the result of LCA for new design products. The training is generalized by using product attributes for an ID in a group as well as another product attributes for another IDs in other groups. The neural network model with back propagation algorithm is used and the results are compared with those of multiple regression analysis. The proposed approach does not replace the full LCA but it would give some useful guidelines fer the design of environmentally conscious products in conceptual design phase.

Effect of Age Cohort on Life Cycle Financial Planning

  • FOLK, Jee Yoong
    • East Asian Journal of Business Economics (EAJBE)
    • /
    • v.2 no.4
    • /
    • pp.26-47
    • /
    • 2014
  • The paper examined effect of age cohort on life cycle financial planning. A total of 990 questionnaires were distributed with a 55.2% return rate. Seven hypotheses were analysed using hierarchical and ordinary regression analysis. The results revealed that age cohort variables made significant contribution to life cycle financial planning as well as personal orientation towards retirement planning, particularly the younger age cohort. Age cohorts do affect personal orientation towards retirement planning with the confidence level making a significant impact. Current financial resources do have a strong positive impact on consumption for all age cohorts. On the other hand, no significant effect was found between age cohorts and current financial resources but older age cohorts were relatively more significant predictors. The implication was that not only should their individual perceptions of financial planning become an increasingly important part of people's long-term commitment throughout their life-cycle, it must also assume the role as a self-directed life-long learning process, in view of the ever-changing and complicated financial environment.

Analysis regarding the Environmental Impact of the Life Cycle of Housing Complexes in Korea (국내 주거 단지에 대한 전과정 환경영향 분석)

  • Choi, Doo-Sung;Jeon, Hung-Chan;Cho, Kyun-Hyong
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.5
    • /
    • pp.13-21
    • /
    • 2014
  • This study on condominium complex will adopt the quantitative assessment of the influence on the environment throughout the entire life cycle of buildings. This paper applies input-out analysis in order to analyse embodied energy regarding input of materials at material production phase. Also, it calculates environment load at use and demolition and destruction Phases of buildings as analysing energy consumption. The study categorises environment load as six impact categories and undertakes environmental impact evaluation. The consequence shows that the environment load of multi-unit dwelling takes up 88.2% out of the entire environment load of condominium complex. Also, as a result of analyzing the environmental impact of the life cycle of condominium buildings, it was found that such environmental impact comprised of about 11.96% of all industries in Korea that had an environmental impact.

The Environmental Impact Assessment for Sustainable Urban Infrastructure Construction - A Case Study on Wastewater Treatment Plant, Sewerage System and Tailrace - (지속가능한 도시기반시설 건설을 위한 잠재적 환경영향 발생 특성 평가 - 하수처리시설, 하수관거, 방수로를 중심으로 -)

  • Park, Kwang-Ho;Kim, Chang-Hee;Hwang, Yong-Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.6
    • /
    • pp.919-926
    • /
    • 2006
  • In this study, environmental impact assessments of wastewater treatment plant (WWTP), sewerage system, and tailrace were performed using LCA methodology. The life cycle stages were divided into 3 categories; construction stage, maintenance stage and demolition & disposal stage. As a tool of impact assessment, Ecoindicator99 containing fate analysis, exposure & effect analysis and damage analysis, was used. As tile results of WWTP LCA, more than 80% of environmental impact was produced from maintenance stage. On the other hand, most of environmental impact was produced from construction stage in the case of tailrace and sewerage system construction.

Application of Probabilistic Health Risk Analysis in Life Cycle Assessment -Part I : A General Framework for Uncertainty and Variability Analysis of Health Risk in Life Cycle Assessment (전과정평가에 있어 확률론적 건강영향분석기법 적용 -Part I : 전과정평가에 있어 확률론적 위해도 분석기법 적용방안에 관한 연구)

  • Choi, Kwang-Soo;Park, Jae-Sung
    • Journal of Environmental Impact Assessment
    • /
    • v.9 no.3
    • /
    • pp.185-202
    • /
    • 2000
  • Uncertainty and variability in Life Cycle Assessment(LCA) have been significant key issues in LCA methodology with techniques in other research area such as social and political science. Variability is understood as stemming from inherent variations in the real world, while uncertainty comes from inaccurate measurements, lack of data, model assumptions, etc. Related articles in this issues were reviewed for classification, distinguish and elaboration of probabilistic/stochastic health risk analysis application in LCA. Concept of focal zone, streamlining technique, scenario modelling and Monte Carlo/Latin Hypercube risk analysis were applied to the uncertainty/variability analysis of health risk in LCA. These results show that this general framework of multi-disciplinary methodology between probabilistic health risk assessment and LCA was of benefit to decision making process by suppling information about input/output data sensitivity, health effect priority and health risk distribution. There should be further research needs for case study using this methodology.

  • PDF

Development of National Life Cycle Inventory Database on Irrigation Water by Agricultural Dam (관개용 저수지 농업용수의 국가 전과정 목록분석 데이터베이스 구축)

  • Kim, Young-Deuk;Park, Pil-Ju
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.3
    • /
    • pp.59-64
    • /
    • 2011
  • The objective of the study is to develop life cycle inventory (LCI) database of dam, a major facility for irrigation water supply. The types of database developed are three out of nine dams according to the size of the wate r storage capacity: two kinds larger than 500,000 $m^3$ depending on gate for discharging (Type 1) and the other dam smaller than 500,000 $m^3$ (Type 2). According to the LCI analysis, type 1 larger than 500,000 $m^3$ storage capacity with gate has the lowest environment impact in the 6 impact categories. The impact of the type 1 accounts for 7~35 % of the type 2 for supplying irrigation water. Comparing with the environment impacts of water for other uses such as drinking and industrial water, the impacts of 1 $m^3$ irrigation water supply is 4~45 % of the one for industrial water supply and 1~16 % of the drinking water's. The three types of LCI DB on the irrigation water by dams will be useful in the application of Life Cycle Assessment in agricultural products and environmental labelling including carbon footprint since it is complied to the guidelines of LCI DB constr uction issued by Ministry of Environment and Ministry of Knowledge Economy.