• Title/Summary/Keyword: Life cycle carbon emission analysis

Search Result 58, Processing Time 0.023 seconds

A Study on Analyzing the Factors Affecting Environmental Loads in the Planning Stage of Korean National Highway Projects

  • Park, Jin-Young;Park, June-Seok;Kim, Myeong-Jin;Kim, Sang-Ryong;Kim, Byung-Soo
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.508-512
    • /
    • 2015
  • Carbon emission calculation guidelines provided by the Korean Ministry of Land, Infrastructure and Transportation (MOLIT) and existing environmental load assessment studies have suggested a method for estimating based on the volume determined after the design development. Therefore they are not being helpful in the decision making of the environmental economics of road facilities in the planning stage in which specific information on construction output volume is lacking. Based on literature analysis of existing studies and consultation from a group of construction environmental professionals, 12 types of property information considered to be related to environmental load were selected from an inventory of information that will be available in the road planning stage. In addition, multiple regression analysis was performed based on the environmental load computed through the life cycle assessment (LCA) of 40 national highway project cases of Korea to deduce five impact factors of environmental load in the road facilities planning stage.

  • PDF

A Study on Technology Priorities for Green Highway (녹색도로 구현을 위한 기술 우선순위 결정에 관한 연구)

  • Lee, Yu-Hwa;Cho, Won-Bum;Kim, Se-Hwan
    • International Journal of Highway Engineering
    • /
    • v.14 no.3
    • /
    • pp.151-162
    • /
    • 2012
  • It is not surprising to hear news about irresistible natural disasters all over the world due to climate change. Korean Government has focused on developing a variety of green technologies to reduce green house gasses, in particular, carbon dioxide. This study suggested 18 technology divisions for achieving green highway technology development in six different sub-sectors considering life-cycle of roadway and surveyed 29 highway and/or transportation professionals of three institutes using AHP(Analytical Hierarchy Process) analysis to construct "Green Highway"and realize carbon emission reductions and energy use efficiency in a road sector in Korea. Expert Choice Software was used to rank 18 technology divisions weighted by two-level choices. Transport Operating Infrastructure Improvement, Roadway Policy Implementation, Green Transportation(such as Pedestrian and Bicycle) were highly ranked by respondents according to results of the AHP modeling. Among the 18 divisions, technology policy for supporting R&D investments from development to commercialization was ranked as the most significant one to be focused. Green Transportation Facility Design/Construction/Operation and Eco-Friendly Roadway Plan were followed as expected since professionals have thought that the planning/design step of the life-cycle is a starting point to reduce carbon dioxide from roads more and more. Additionally, comparing the results with the Government investment trend 2006-2011 for the roads, it can be interpreted that the Government should invest to the R&D area more widely than before to promote element and core technology development for Green Highway Construction. Above all, small and mid-sized businesses have to be invested as well as encouraged to undertake green highwayrelated objects to accomplish the divisions which ranked high.

Environmental Impact Assessment of Buildings based on Life Cycle Assessment (LCA) Methodology (전과정평가(LCA) 방법을 이용한 건축물에 대한 환경영향 평가 방법)

  • Hong, Tae-Hoon;Ji, Chang-Yoon;Jeong, Kwang-Bok
    • Korean Journal of Construction Engineering and Management
    • /
    • v.13 no.5
    • /
    • pp.84-93
    • /
    • 2012
  • Most of the studies on reduction of buildings' environmental burden in the construction industry have been focused on carbon dioxide emission, although there are various kinds of environmental issues such as global warming, acidification, and etc. which are considered by many researchers. Therefore, this study defined and suggested six impact categories and the principles to assess each impact for the assessment of comprehensive environmental impacts of buildings. The six impact categories are abiotic depletion, global warming, ozone layer depletion, acidification, eutrophication, and photochemical oxidation. A case study has been conducted through comparative analysis of two structural design alternatives to confirm the necessity of assessing the six impact categories. That is, the results of global warming potential and the six impacts proposed in this study were compared. By comparing the results of only global warming potential, the second design alternative using 24MPa concrete was chosen as a better alternative, while the first design alternative using 21MPa concrete was resulted as a better alternative when six impact categories were considered. The results mean that the assessment of various environmental impacts is an appropriate and reasonable approach and the comprehensive assessment offers more reliable results of environmental impacts in the building construction.

Application of LCA on Lettuce Cropping System by Bottom-up Methodology in Protected Cultivation (시설상추 농가를 대상으로 하는 bottom-up 방식 LCA 방법론의 농업적 적용)

  • Ryu, Jong-Hee;Kim, Kye-Hoon;Kim, Gun-Yeob;So, Kyu-Ho;Kang, Kee-Kyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1195-1206
    • /
    • 2011
  • This study was conducted to apply LCA (Life cycle assessment) methodology to lettuce (Lactuca sativa L.) production systems in Namyang-ju as a case study. Five lettuce growing farms with three different farming systems (two farms with organic farming system, one farm with a system without agricultural chemicals and two farms with conventional farming system) were selected at Namyangju city of Gyeonggi-province in Korea. The input data for LCA were collected by interviewing with the farmers. The system boundary was set at a cropping season without heating and cooling system for reducing uncertainties in data collection and calculation. Sensitivity analysis was carried out to find out the effect of type and amount of fertilizer and energy use on GHG (Greenhouse Gas) emission. The results of establishing GTG (Gate-to-Gate) inventory revealed that the quantity of fertilizer and energy input had the largest value in producing 1 kg lettuce, the amount of pesticide input the smallest. The amount of electricity input was the largest in all farms except farm 1 which purchased seedlings from outside. The quantity of direct field emission of $CO_2$, $CH_4$ and $N_2O$ from farm 1 to farm 5 were 6.79E-03 (farm 1), 8.10E-03 (farm 2), 1.82E-02 (farm 3), 7.51E-02 (farm 4) and 1.61E-02 (farm 5) kg $kg^{-1}$ lettuce, respectively. According to the result of LCI analysis focused on GHG, it was observed that $CO_2$ emission was 2.92E-01 (farm 1), 3.76E-01 (farm 2), 4.11E-01 (farm 3), 9.40E-01 (farm 4) and $5.37E-01kg\;CO_2\;kg^{-1}\;lettuce$ (farm 5), respectively. Carbon dioxide contribute to the most GHG emission. Carbon dioxide was mainly emitted in the process of energy production, which occupied 67~91% of $CO_2$ emission from every production process from 5 farms. Due to higher proportion of $CO_2$ emission from production of compound fertilizer in conventional crop system, conventional crop system had lower proportion of $CO_2$ emission from energy production than organic crop system did. With increasing inorganic fertilizer input, the process of lettuce cultivation covered higher proportion in $N_2O$ emission. Therefore, farms 1 and 2 covered 87% of total $N_2O$ emission; and farm 3 covered 64%. The carbon footprints from farm 1 to farm 5 were 3.40E-01 (farm 1), 4.31E-01 (farm 2), 5.32E-01 (farm 3), 1.08E+00 (farm 4) and 6.14E-01 (farm 5) kg $CO_2$-eq. $kg^{-1}$ lettuce, respectively. Results of sensitivity analysis revealed the soybean meal was the most sensitive among 4 types of fertilizer. The value of compound fertilizer was the least sensitive among every fertilizer imput. Electricity showed the largest sensitivity on $CO_2$ emission. However, the value of $N_2O$ variation was almost zero.

Economic and Environmental Sustainability Assessment of Livestock Manure Gasification for Fuel Gas Production (축분 가스화를 통한 연료가스 생산 공정의 경제적, 환경적 지속가능성 평가)

  • Ji Hong Moon;Kyung Hwan Ryu
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.291-298
    • /
    • 2023
  • This research evaluates the sustainability of gasifying livestock manure to produce fuel gas from an economic and carbon emission perspective. The entire process, including gasification, fuel gas purification, and pipeline installation to transport the produced fuel gas to the demanding industrial complex, is analyzed for realistic feasibility. The study is conducted using an ASPEN PLUS simulation with experimental data. The results of the economic and CO2 life cycle assessments confirm that the fuel gas produced from livestock manure is competitive with natural gas despite having a lower calorific value. When used as a fuel with a high hydrogen content, the fuel gas emits less CO2 per calorific value, making it more environmentally friendly. A scenario analysis is also performed to determine the expected economics, with price competitiveness being influenced by several factors. Although a significant decrease in natural gas prices could reduce the price competitiveness of the proposed process, it can still be supported by government policies. The cash flow analysis also confirms the economic viability of the process.

Estimation of Carbon Emission and Application of LCA (Life Cycle Assessment) from Potato (Solanum tuberosum L.) Production System (감자의 생산과정에서 발생하는 탄소배출량 산정과 전과정평가의 적용)

  • So, Kyu-Ho;Ryu, Jong-Hee;Shim, Kyo-Moon;Lee, Gil-Zae;Roh, Kee-An;Lee, Deog-Bae;Park, Jung-Ah
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.728-733
    • /
    • 2010
  • This study was carried out to estimate carbon emission using LCA and to establish LCI database of potato production system. Potato production system was categorized into the fall season potato and the spring season potato according to potato cropping type. The results of collecting data for establishing LCI D/B showed that input of fertilizer for fall season potato production was more than that for spring season potato production. Input of pesticide for spring season potato production was much more than that for fall season potato production. The value of field direct emission ($CO_2$, $CH_4$, $N_2O$) were 2.17E-02 kg $kg^{-1}$ for spring season potato and 2.47E-02 kg $kg^{-1}$ for fall season potato, respectively. The result of LCI analysis focussed on the greenhouse gas (GHG), it was observed that carbon footprint values were 8.38E-01 kg $CO_2$-eq. $kg^{-1}$ for spring season potato and 8.10E-01 kg $CO_2$-eq. $kg^{-1}$ for fall season potato; especially for 90% and 6% of $CO_2$ emission from fertilizer and potato production, respectively. $N_2O$ was emitted from the process of N fertilizer production (76%) and potato production (23%). It was observed that characterization of values of GWP were 8.38E-01 kg $CO_2$-eq. $kg^{-1}$ for spring season potato and 8.10E-01 kg $CO_2$-eq. $kg^{-1}$ for fall season potato.

Applied Technologies and Effects for the Carbon Zero Office Building (업무용 탄소제로건물의 적용기술 및 효과)

  • Lee, Jae-Bum;Hong, Sung-Chul;Beak, Name-Choon;Choi, Jin-Young;Hong, You-Deog;Lee, Suk-Jo;Lee, Dong-won
    • Journal of Climate Change Research
    • /
    • v.2 no.4
    • /
    • pp.283-295
    • /
    • 2011
  • Many actions against climate change have been taken to reduce greenhouse gases (GHGs) emissions at home and abroad. As of 2007, the GHGs emitted from buildings accounted for about 23 % of Korea's total GHGs emission, which is the second largest GHG reduction potential following industry. In this study, we introduced Carbon Zero Building (CZB), which was constructed by the National Institute of Environmental Research to cut down GHGs from buildings in Korea, and evaluated the main applied technologies, the amount of energy load and reduced energy, and economic values for CZB to provide data that could be a basis in the future construction of this kind of carbon-neutral buildings. A total of 66 technologies were applied for this building in order to achieve carbon zero emissions. Applied technologies include 30 energy consumption reduction technologies, 18 energy efficiency technologies, and 5 eco-friendly technologies. Out of total annual energy load ($123.8kWh/m^2$), about 40% of energy load ($49kWh/m^2$) was reduced by using passive technologies such as super insulation and use of high efficiency equipments and the other 60% ($74.8kWh/m^2$) was reduced by using active technologies such as solar voltaic, solar thermal, and geothermal energy. The construction cost of CZB was 1.4 times higher than ordinary buildings. However, if active technologies are excluded, the construction cost is similar to that of ordinary buildings. It was estimated that we could save annually about 102 million won directly from energy saving and about 2.2 million won indirectly from additional saving by the reduction in GHGs and atmospheric pollutants. In terms of carbon, we could reduce 100 ton of $CO_2$ emissions per year. In our Life Cycle Cost (LCC) analysis, the Break Even Point (BEP) for the additional construction cost was estimated to be around 20.6 years.

Construction of Fuzzy Logic Based on Knowledge for Greenery Warranty Systems (그린 보증시스템을 위한 지식기반 퍼지로직 구축)

  • Lee, Sang-Hyun;Lee, Sang-Joon;Moon, Kyeong-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.3
    • /
    • pp.17-25
    • /
    • 2011
  • Green IT, composed term with Green and Information Technology(IT), use IT for energy savings and carbon emission reductions. Green IT went beyond the scope of greening IT, and recently it's concept is expanded as far as counterplan of climate change including greening other industries by IT. 85% of total greenhouse gas emissions from the energy sector and 20% of them comes from transport parts, so it is time to research IT for automotive industry. In this paper, we take up the knowledge based fuzzy logic to provide life cycle analysis associated with greenhouse gas emissions for industry produced warranty claims frequently such as automobile industry. We propose a analysis method of warranty claims using expert knowledge about the warranty in car exhaust systems related to greenhouse gas emissions, past test results of malfunction, analysis of past field data, and warranty data. Furthermore, we propose life knowledge-based GWS (Greenery Warranty System). We demonstrate the applicability of IT in eco-friendly automotive industry by implementing knowledge-based fuzzy logic and applying.