• Title/Summary/Keyword: Life Prediction

Search Result 1,947, Processing Time 0.031 seconds

Fatigue Life Analysis of Composite Materials (복합재료의 피로수명 해석)

  • 이창수;황운봉;박현철;한경섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.268-271
    • /
    • 1999
  • Fatigue life Prediction is investigated analytically based on the fatigue modulus concept. Fatigue modulus degradation rate at any fatigue cycle was assumed as a power function of number of fatigue cycles. New stress function describing the relation of initial fatigue modulus and elastic modulus was used to account for material non-linearity at the first cycle. It was assumed that fatigue modulus at failure is proportional to applied stress level. A new fatigue life prediction equation as a function of applied stress is proposed. The prediction was verified experimentally using cross-ply carbon/epoxy laminate (CFRP) tube.

  • PDF

FATIGUE LIFE PREDICTION OF RUBBER MATERIALS USING TEARING ENERGY

  • Kim, H.;Kim, H.Y.
    • International Journal of Automotive Technology
    • /
    • v.7 no.6
    • /
    • pp.741-747
    • /
    • 2006
  • It has been almost impossible to predict the fatigue life in the field of rubber materials by numerical methods. One of the reasons is that there are no obvious fracture criteria and excessively various ways of mixing processes. Tearing energy is considered as a fracture criterion which can be applied to rubber compounds regardless of different types of fillers, relative to other fracture factors. Fatigue life of rubber materials can be approximately predicted based on the assumption that the latent defect caused by contaminants or voids in the matrix, imperfectly dispersed compounding ingredients, mold lubricants and surface flaws always exists. Numerical expression for the prediction of fatigue life was derived from the rate of rough cut growth region and the formulated tearing energy equation. Endurance test data for dumbbell specimens were compared with the predicted fatigue life for verification. Also, fatigue life of industrial rubber components was predicted.

A Study on the Prediction of Fatigue Life by use of Probability Density Function (확률밀도함수를 이용한 피로균열 발생수명 예측에 관한 연구)

  • 김종호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.453-461
    • /
    • 1999
  • The estimation of fatigue life at the design stage is very important in order to arrive at feasible and cost effective solutions considering the total lifetime of the structure and machinery compo-nents. In this study the practical procedure of prediction of fatigue life by use of cumulative damage factors based on Miner-Palmgren hypothesis and probability density function is shown with a $135,000m^3$ LNG tank being used as an example. In particular the parameters of Weibull distribution taht determine the stress spectrum are dis-cussed. At the end some of uncertainties associated with fatigue life prediction are discussed. The main results obtained from this study are as follows: 1. The practical procedure of prediction of fatigue life by use of cumulative damage factors expressed in combination of probability density function and S-N data is proposed. 2. The calculated fatigue life is influenced by the shape parameter and stress block. The conser-vative fatigue design can be achieved when using higher value of shape parameter and the stress blocks divded into more stress blocks.

  • PDF

Fatigue Growth Life Prediction for Collinear Multiple Surface Cracks (동일평면상에 존재하는 복수표면균열의 피로성장수명예측)

  • Lee, J.H.;Choy, Y.S.;Kim, Y.J.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1668-1677
    • /
    • 1993
  • The objective of this paper is to develop a computational model for predicting the fatigue propagation of collinear multiple surface cracks under constant amplitude and variable amplitude loadings. After examining fatigue crack growth behavior for CT specimens and single surface crack specimens, empirical equations of(11) and(12) are proposed for the prediction of fatigue life in a multiple surface crack geometry. The accuracy of the proposed model is verified using a life prediction computer program. Several case studies were performed to check the accuracy of the proposed model and to verify the usefulness of the developed program. Good agreement is observed between the numerical results based on the proposed model and the published experimental data.

Creep Life Prediction of SUS 316L Stainless Steel (STS 316L 스테인리스강의 크리프 수명예측)

  • Yoon, Jong-Ho;Hwang, Kyung-Choong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.16-22
    • /
    • 2006
  • Stainless steel has widely been used in various industrial fields because it has high corrosion resistance. But, we have little design data about the creep life prediction of SUS316L stainless steel. Therefore, in this study, a series of creep tests and study on them under 16 constant stress and temperature combined conditions have been performed to get the creep design data and life prediction of SUS316L stainless steels and we have gotten the following results. First, the stress exponents decrease as the test temperatures increase. Secondly, the creep activation energy gradually decreases as the stresses become bigger. Thirdly, the constant of Larson-Miller parameters on this alloy is estimated about 10. And last, the creep rupture fractographs show the intergranular ductile fracture with many dimples.

Severity Test of Road Surface Profile by Using the Fatigue Life Prediction Method (피로수명 예측법을 이용한 각 도로가 차량의 내구성에 미치는 가혹도 평가)

  • Jung, W.W.;Kang, S.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.154-161
    • /
    • 1995
  • There are several kinds of driving conditions according to the characteristic of each vehicle diver. Automaker produces vehicle strong enough to satisfy this several driving conditions at the point of vehicle durability. In order to develop the car in a short period, Automaker engineer tests vehicle at serveral accelerated durability test roads. Before testing the vehicle durability, test engineer must know how much this test road severe than general field road which is composed of high way, city road, paved road and unpaved road. This paper suggests two types of road severity test method that is using relative fatigue life prediction method and using absolute fatigue life prediction method, and also present the merits and demerits of two test methods.

  • PDF

A Study on Fatigue Life Assessment Procedure for a Container Crane (컨테이너 크레인의 피로수명 평가 방법에 관한 연구)

  • 정동관;윤기봉
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.2
    • /
    • pp.11-18
    • /
    • 1999
  • Proper fatigue life prediction procedures are needed for mechanical structures which requires high durability and reliability. In this paper, a fatigue life prediction procedure has been developed for predicting fatigue life of moving structure under variable loadings. The developed procedure was efficiently applied for a fatigue life calculation of a container crane. Especially, the procedure is useful for safety assessment by computer simulation. A computer program was developed for fatigue life assessment by adopting the forementioned procedure.

  • PDF

Creep Life Prediction of Aircraft Gas Turbine material by ISM (ISM에 의한 항공기용 가스터빈 재료의 크리프 수명예측)

  • 공유식
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.43-48
    • /
    • 2001
  • In this paper, the real-time prediction of high temperature creep strength and creep for nickel-based superalloy Udimet 720 (high-temperature and high-pressure gas turbine engine materials) was performed on round-bar type specimens under pure load at the temperatures of 538, 649 and 704$^{\circ}C$. The predictive equation of ISM creep has better reliability than that of LMP and LMP-ISM, and its reliability is getting better for long time creep prediction ($10^3~10^5$h).

  • PDF