• Title/Summary/Keyword: Life Prediction

Search Result 1,972, Processing Time 0.039 seconds

Verification Study of Lifetime Prediction Models for Pb-Based and Pb-Free Solders Used in Chip Resistor Assemblies Under Thermal Cycling (온도변화 환경에서 칩저항 실장용 유·무연솔더의 수명모델 검증연구)

  • Han, Changwoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.3
    • /
    • pp.259-265
    • /
    • 2016
  • Recently, life prediction models for Pb-based and Pb-free solders used in chip resistor assemblies under thermal cycling have been introduced. The models suggest that the field lifetimes of Pb-free solders would be better than those of Pb-based solders when used for chip resistors under thermal cycling conditions, while the lifetime of the chip assemblies under accelerated test conditions show a reverse relationship. In this study, the prediction models were verified by applying the model to another research case. Finite element models were built, thermal cycling conditions were applied, and the energy densities were calculated. Finally, life prediction analysis was conducted for the cases where Pb-based and Pb-free solders were used. The prediction results were then compared with the test data of the case. It was verified that the predictions of the developed life cycle models are on the practical scale.

A new finite element procedure for fatigue life prediction of AL6061 plates under multiaxial loadings

  • Tarar, Wasim;Herman Shen, M.H.;George, Tommy;Cross, Charles
    • Structural Engineering and Mechanics
    • /
    • v.35 no.5
    • /
    • pp.571-592
    • /
    • 2010
  • An energy-based fatigue life prediction framework was previously developed by the authors for prediction of axial, bending and shear fatigue life at various stress ratios. The framework for the prediction of fatigue life via energy analysis was based on a new constitutive law, which states the following: the amount of energy required to fracture a material is constant. In the first part of this study, energy expressions that construct the constitutive law are equated in the form of total strain energy and the distortion energy dissipated in a fatigue cycle. The resulting equation is further evaluated to acquire the equivalent stress per cycle using energy based methodologies. The equivalent stress expressions are developed both for biaxial and multiaxial fatigue loads and are used to predict the number of cycles to failure based on previously developed prediction criterion. The equivalent stress expressions developed in this study are further used in a new finite element procedure to predict the fatigue life for two and three dimensional structures. In the second part of this study, a new Quadrilateral fatigue finite element is developed through integration of constitutive law into minimum potential energy formulation. This new QUAD-4 element is capable of simulating biaxial fatigue problems. The final output of this finite element analysis both using equivalent stress approach and using the new QUAD-4 fatigue element, is in the form of number of cycles to failure for each element on a scale in ascending or descending order. Therefore, the new finite element framework can provide the number of cycles to failure at each location in gas turbine engine structural components. In order to obtain experimental data for comparison, an Al6061-T6 plate is tested using a previously developed vibration based testing framework. The finite element analysis is performed for Al6061-T6 aluminum and the results are compared with experimental results.

A Study on Life Prediction of Hydraulic Piston Pump (유압 피스톤 펌프의 수명 예측 연구)

  • Kim, Kyungsoo;Lee, Jihwan;Kang, Myeongcheol;Ryuh, Beomsahng
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.607-613
    • /
    • 2018
  • Hydraulic systems are widely used in the field of defense, construction machinery, agricultural machinery, and general industries, due to various advantages such as quick response speed and precision control. The defense equipments such as light rescue vehicle is operated in very harsh environments, so hydraulic components used in defense equipment are required to have very high reliability. In particular, hydraulic piston pump is very important component in a hydraulic systems, so life prediction of pump is essential. Therefore, in this study, we analyze the potential failure and the main failure mode of the hydraulic piston pump for the light rescue vehicle through the FMEA analysis, and predict the life of the pump by the accelerated life test considering the usage conditions.

A Study on the Shelf-life Prediction of the Single Base Propellants Using Accelerated Aging Test (가속노화시험을 이용한 단기추진제의 저장수명예측에 관한 연구)

  • Lee, Jong-Chan;Yoon, Keun-Sig;Kim, Yong-Hwa;Cho, Ki-Hong
    • Journal of Korean Society for Quality Management
    • /
    • v.35 no.2
    • /
    • pp.45-52
    • /
    • 2007
  • The danger of self-ignition of single base propellants will increase with time. Therefore, a good prediction of the safe storage time is very important. In order to determine the remaining shelf-life of the propellants, the content of stabilizer is determined. The propellants stored under normal storage conditions about 10 to 18 years were investigated and accelerated aging test was carried out by storing propellant sample at higher temperature. Finally, we analyzed the results by various methods in order to show the best way to predict the realistic shelf-life. The safe storage life of the propellants will be 24 years, at least 15 years. In case of applying Arrhenius's law, using the reaction rate constant at 28$^{\circ}C$ to 30$^{\circ}C$ to predict the shelf-life by accelerated aging test is reasonable for a good prediction.

Prediction of RC structure service life from field long term chloride diffusion

  • Safehian, Majid;Ramezanianpour, Ali Akbar
    • Computers and Concrete
    • /
    • v.15 no.4
    • /
    • pp.589-606
    • /
    • 2015
  • It is well-documented that the major deterioration of coastal RC structures is chloride-induced corrosion. Therefore, regional investigations are necessary for durability based design and evaluation of the proposed service life prdiction models. In this paper, four reinforced concrete jetties exposed to severe marine environment were monitored to assess the long term chloride penetration at 6 months to 96 months. Also, some accelerated durability tests were performed on standard samples in laboratory. As a result, two time-dependent equations are proposed for basic parameters of chloride diffusion into concrete and then the corrosion initiation time is estimated by a developed probabilistic service life model Also, two famous service life prediction models are compared using chloride profiles obtained from structures after about 40 years in the tidal exposure conditions. The results confirm that the influence of concrete quality on diffusion coefficients is related to the concrete pore structure and the time dependence is due to chemical reactions of sea water ions with hydration products which lead a reduction in pore structure. Also, proper attention to the durability properties of concrete may extend the service life of marine structures greater than fifty years, even in harsh environments.

A Study on the Life Span Prediction of Railroad Wheels caused by Rolling Contact Fatigue (철도차륜의 구름접촉피로에 의한 수명예측에 관한 연구)

  • Chun, C.K.;Yang, J.S.;Park, S.J.;Yi, G.S.;Ma, Y.S.
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1012-1020
    • /
    • 2006
  • The crack that occurs on the wheels of railroad cars can be categorized into a surface crack that starts from the surface or a subsurface crack that starts from the inside and can be detrimental to safe railroad operations. Therefore, estimating the growth life span of this type of crack is very important. In this research, the stress distributions, displacements, and the growth-life spans of both surface cracks and subsurface cracks have been studied. By using the finite element analysis, especially in the life span prediction process, the stress conditions and the stress intensity factors of the crack tip have been discovered. The Paris formula has been used to analyze the growth-life span prediction.

  • PDF

A Comparative Study of Life Prediction using Accelerated Aging Tests and Machine Learning Techniques to Predict the Life of Composite Materials including CNT Materials (CNT소재를 포함하는 복합소재의 수명예측을 위해 가속열화 시험 및 머신러닝 기법을 이용한 수명예측 비교 연구)

  • Kim, Sung-Dong;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.456-458
    • /
    • 2022
  • Due to the environmental regulations of the International Maritime Organization, shipyards are conducting various researches to improve the efficiency of ships, and efforts are being made to reduce the weight of ships. Recently, composite materials including CNT materials have the advantage of being able to reduce weight by 40% or more compared to general steel plate materials, and have the advantage of being able to be used as a substitute for ship clamps or door skins. Therefore, in this study, to predict the life of composite materials including CNT materials, the results were compared through the accelerated deterioration test method and the life prediction using machine learning techniques. The accelerated degradation test used the Arrhenius model equation, and the machine learning method predicted the life using a regression analysis algorithm.

  • PDF

Fatigue Characteristic and Life prediction of Induction Surface Hardened Cr-Mo Steel (고주파 표면열처리된 Cr-Mo강재의 피로특성과 수명예측)

  • 송삼흥;최병호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.676-679
    • /
    • 1995
  • Practically, induction surface hardening is used widely to enhance the local strength of structure. In this study, Fatigue limit and its S-T characteristic for raw and induction hardened specimen of SCM440 is studied experimentally. The life prediction was considered by Juvinall's equation and its predicted result is compared with experiment.

  • PDF

Analysis of Reheater Pipe Crack for Oil Power Plant (중유발전소의 재열기관 균열 해석)

  • Hong, S.H.;Hong, S.J.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.643-647
    • /
    • 2003
  • Power plant Piping operating at elevated temperature often fails prematurely by the growth of microcracks under creep conditions. Therefore, the life assessment of high temperature components that contain cracks is an important technological problem. The mechanisms of crack growth in simple metals and alloys have been investigated using both mechanical and microstructural approaches. In this study, life prediction accounting for creep, crack growth and thermal stress is analyzed.

  • PDF

The Creep Life Prediction Method by Cavity Area (기공의 면적에 의한 크립 수명예측법)

  • 홍성호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.5
    • /
    • pp.1455-1461
    • /
    • 1991
  • 본 연구에서는 Kachanov의 재료손상(material damage)모델을 이용하여 새로운 수명예측식을 만들고, 이 수명예측식의 타당성을 조사하기 위하여, 최근에 발표된 크 립 수명과 기공분포와의 실험결과와 비교하였다.