• Title/Summary/Keyword: Life Cycle Design

Search Result 1,160, Processing Time 0.027 seconds

Design of a Plant Life Cycle Data Management System for Plant Operation and Maintenance (플랜트 설계 및 운영 데이터 통합관리 시스템 설계)

  • Lee, Jae Hyun;Suh, Hyo Won
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.42 no.3
    • /
    • pp.241-248
    • /
    • 2016
  • Plant life cycle consists of design, construction, certification, operation, and maintenance phases, and various and enormous plant life cycle data is involved in each phase. Plant life cycle data should be linked with each other based on its proper relationships, so that plant operators can access necessary plant data during their regular operations and maintenance works. Currently, the relationships of plant life cycle data may not be defined explicitly, or they are scattered over several plant information systems. This paper proposes high level design of a plant life cycle data management system based on pre-defined plant life cycle database design. ISO-15926 standard is adapted for the database design. User-interface designs of the plant life cycle data management system are explained based on analysis of plant owners' requirements. A conceptual design of the database is also described with the entity-relationship diagram.

Optimum Life Cycle Cost Design of Steel Box Girder Bridges (강상형교의 최적 Life Cycle Cost 설계)

  • 조효남;민대홍;김구선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.151-158
    • /
    • 1998
  • This paper presents an optimal decision model for minimizing the life-cycle cost of steel box girder bridges. The point is that it takes into account service life process as a whole, and the life-cycle costs include initial (design, testing, and construction) costs, maintenance costs and expected failure costs. The problem is formulated as that of minimization of expected total life-cycle cost with respect to the design variables. The optimal solution identifies those values of the decision variables that result in minimum expected total cost. The performance constraints in the form of flexural failure and shear failure are those specified in the design code. Based on extensive numerical investigations, it may be positively stated that the optimum design of steel box girder bridges based on life-cycle cost approach proposed in this study provides a lot more rational and economical design, and thus the proposed approach will propose the development of new concepts and design methodologies that may have important implications in the next generation performance-based design codes and standards.

  • PDF

Optimal Design of PSC-I Girder Bridge Considering Life Cycle Cost (생애주기비용을 고려한 PSC-I형 교량의 최적설계)

  • Park, Jang-Ho;Shin, Yung-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.5
    • /
    • pp.48-56
    • /
    • 2009
  • This paper presents the procedure for the optimal design of a PSC-I girder bridge considering life cycle cost (LCC). The load carrying capacity curves for the concrete deck, PSC-I girder and $\pi$-type pier were derived and used for the estimate of service lives. Total life cycle cost for the service life was calculated as sum of initial cost, damage cost, maintenance cost, repair and rehabilitation cost, user cost, and disposal cost. The advanced First Order Second Moment method was used to estimate the damage cost. The optimization method was applied to the design of PSC-I girder bridge. The objective function was set to the annual cost, which is defined by dividing the total life cycle cost by the service life, and constraints were formulated on the basis of Korean Standards. The optimal design was performed for various service lives and the effects of design factors were investigated.

Minimum life-cycle cost design of ice-resistant offshore platforms

  • Li, Gang;Zhang, Da-Yong;Yue, Qian-Jin
    • Structural Engineering and Mechanics
    • /
    • v.31 no.1
    • /
    • pp.11-24
    • /
    • 2009
  • In China, the oil and natural gas resources of Bohai Bay are mainly marginal oil fields. It is necessary to build both ice-resistant and economical offshore platforms. However, risk is involved in the design, construction, utilization, maintenance of offshore platforms as uncertain events may occur within the life-cycle of a platform under the extreme ice load. In this study, the optimum design model of the expected life-cycle cost for ice-resistant platforms based on cost-effectiveness criterion is proposed. Multiple performance demands of the structure, facilities and crew members, associated with the failure assessment criteria and evaluation functions of costs of construction, consequences of structural failure modes including damage, revenue loss, death and injury as well as discounting cost over time are considered. An efficient approximate method of the global reliability analysis for the offshore platforms is provided, which converts the implicit nonlinear performance function in the conventional reliability analysis to linear explicit one. The proposed life-cycle optimum design formula are applied to a typical ice-resistant platform in Bohai Bay, and the results demonstrate that the life-cycle cost-effective optimum design model is more rational compared to the conventional design.

Optimum Life Cycle Cost Design of High-Speed Railway Steel Bridges (고속철도 강교량의 총기대비용 최적설계)

  • 조효남;민대홍;조준석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.109-114
    • /
    • 2000
  • In this paper, an optimum design model for minimizing the life-cycle cost (LCC) of high-speed railway steel bridges is proposed The point is that it takes into account service life process as a whole, and thus the life-cycle costs include initial (design, testing, and construction) costs, maintenance costs, expected strength failure costs and expected serviceability failure costs. The problem is formulated as that of minimization of expected total life-cycle cost with respect to the design variables. By processing the optimum LCC design the effective and rational basis is proposed for calculating the total LCC and the sensitivity analysis of LCC is peformed. Based on a numerical example, it may be positively stated that the optimum LCC design of high-speed railway steel bridges proposed in this study provides a lot more rational and economical design, and thus the proposed approach will expedite the development of new concepts and design methodologies that may have important implications in the next generation performance-based design codes and standards.

  • PDF

Eco-Friendly Mechanical Design of Touch-Screen Monitor Stand through Life-Cycle Assessment(LCA) (전과정평가(LCA)에 기반한 터치스크린 모니터 스탠드의 친환경적 기구설계)

  • Yi, Hwa-Cho;Jang, Woon-Geun;Han, Hoon;Jo, Young-Rae;Jeon, Chan-gon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.15 no.4
    • /
    • pp.117-124
    • /
    • 2012
  • Recent years, many industries acknowledge that environmental substantiality of products must be an essential role and it is one of the major importances for industries to consider the environmental impacts of products at the early stages of product development. This study investigated eco-design parameters and $CO_2-eq$. emissions in each stage of raw material acquisition, manufacturing, transportation, use and disuse in life cycle of touch monitor stand based on Eco-Design. In this study, to fulfill of Eco-Design, the environmental impact assessment of through LCA(Life cycle assessment) was carried out with benchmarking monitor stand and we suggested the direction of new design of touch monitor stand mechanism based on eco-friendly considerations. New design based on LCT(Life Cycle Thinking) showed that the following eco-friendly considerations at the early stage of design to be helpful to reduce GWP(Global Warming Potential) [kg $CO_2-eq$.] in new monitor stand development and it is necessary for Eco-Design process of the product.

Optimal Design of Bridge Substructure Considering Uncertainty (불확실성을 고려한 교량 하부구조 최적설계)

  • Pack, Jang-Ho;Shin, Young-Seok;Shin, Wook-Bum;Lee, Jae-Woo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.387-390
    • /
    • 2008
  • The importance of the life cycle cost analysis for construction projects of bridge has been recognized over the last decades. Accordingly, theoretical models, guidelines, and supporting softwares have been developed for the life cycle cost analysis of bridges. However, it is difficult to predict life cycle cost considering uncertainties precisely. This paper presents methodology for optimal design of substructure for a steel box bridge. Total life cycle cost for the service life is calculated as sum of initial cost, damage cost considering uncertainty, maintenance cost, repair and rehabilitation cost. The optimization method is applied to design of a bridge substructure with minimal cost, in which the objective function is set to life cycle cost and constraints are formulated on the basis of Korean Bridge Design Specification. Initial cost is calculated based on standard costs of the Korea Construction Price Index and damage cost on the damage probabilities to consider the uncertainty of load and resistance. An advanced first-order second moment method is used as a practical tool for reliability analysis using damage probability. Maintenance cost and cycle is determined by a stochastic method and user cost includes traffic operation costs and time delay costs.

  • PDF

Life-Cycle Engineering : A state-of-the-art survey

  • Lee Ki-Sook;Seo Kwang-Kyu
    • Proceedings of the KAIS Fall Conference
    • /
    • 2004.06a
    • /
    • pp.335-338
    • /
    • 2004
  • Life-Cycle Engineering(LCE) is a decision-making methodology that considers environmental and cost needs during the product life-cycle. Environmental conscious design and manufacturing has become more and more important and it has been enforced by governmental regulations and used as trade restriction. LCE involves integrating environmental consideration into new product development including design, material selection, manufacturing processes and distribution of the product to the consumers, plus the end-of-life management such as disassembly, material recovery, remanufacturing of the product after discarding it. In this paper, a state-of-the-art survey of LCE is presented.

  • PDF

A Methodology on Estimating the Product Life Cycle Cost using Artificial Neural Networks in the Conceptual Design Phase (개념 설계 단계에서 인공 신경망을 이용한 제품의 Life Cycle Cost평가 방법론)

  • 서광규;박지형
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.9
    • /
    • pp.85-94
    • /
    • 2004
  • As over 70% of the total life cycle cost (LCC) of a product is committed at the early design stage, designers are in an important position to substantially reduce the LCC of the products they design by giving due to life cycle implications of their design decisions. During early design stages, there may be competing concepts with dramatic differences. In addition, the detailed information is scarce and decisions must be made quickly. Thus, both the overhead in developing parametric LCC models fur a wide range of concepts, and the lack of detailed information make the application of traditional LCC models impractical. A different approach is needed, because a traditional LCC method is to be incorporated in the very early design stages. This paper explores an approximate method for providing the preliminary LCC, Learning algorithms trained to use the known characteristics of existing products might allow the LCC of new products to be approximated quickly during the conceptual design phase without the overhead of defining new LCC models. Artificial neural networks are trained to generalize product attributes and LCC data from pre-existing LCC studies. Then the product designers query the trained artificial model with new high-level product attribute data to quickly obtain an LCC for a new product concept. Foundations fur the learning LCC approach are established, and then an application is provided.

Management of Product Life Cycle Data for Environmental Design (환경친화적 설계를 위한 제품 전주기 데이터 관리)

  • 황오현;강무진;이화조;최병욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.115-120
    • /
    • 1997
  • Environmental Product Life Cycle Management is an activity for defining and describing the product, process or activity environmentally. Especially, the main responsibility for the environmental impact of products lies in the design phase of product. Designers cany a heavy responsibility to determine technical, economic and ecological properties of the product. So in order to help designers, structured understanding and application of treating large amount of data and infonnation should be considered. This paper presents a methodological approach for decision supporting to build Product Life Cycle Management system and show a set of database modeling. Additionally, a key issue for databases is the quality of the provided information.

  • PDF