• 제목/요약/키워드: Life Cycle Assessment (LCA) method

검색결과 93건 처리시간 0.024초

기후변화 대응을 위한 수처리 여과시스템 선정 방안 연구 (Study on Selection of Water Treatment Filtration System to Cope with Climate Change)

  • 황윤빈;박기학
    • 한국기후변화학회지
    • /
    • 제9권1호
    • /
    • pp.75-80
    • /
    • 2018
  • The problem of water shortages and water related disasters caused by climate change has increased the seriousness of water problems and the importance of water treatment technology capable of securing clean water is expanding. In this study, we analyzed not only the water pollutant generated by the filtration system technology of various water treatment technologies but also the indirect greenhouse gas emissions generation, and analyzed the influence on the environment. The subjects of study are Fabric Filter, Reverse Osmosis System and Pressurized Microfiltration Device which are widely used for water treatment and we analyzed the impact on the environment using the Life Cycle Assessment (LCA) method using the electricity amount necessary for use, the water purification efficiency, the throughput per ton and the cost. The amount of greenhouse gas generated when the Pressurized Microfiltration Device operates for 1 year is $2.15E+04kg\;CO_2-eq$., Fabric Filter is $3.29E+04kg\;CO_2-eq$., and Reverse Osmosis System is $1.68E+05kg\;CO_2-eq$. As a result of analyzing the amount of greenhouse gas generated at the time of purifying 1 ton of the Pressurized Microfiltration Device and the conventional filtration system, the Pressurized Microfiltration Device was $20.5g\;CO_2-eq$., Fabric Filter was $34.7g\;CO_2-eq$., and Reverse Osmosis System was $191.7g\;CO_2-eq$. The amount of greenhouse gas generated was calculated to be 41.0% less than that of the Fabric Filter by the Pressurized Microfiltration Device and 89.3% less than the Reverse Osmosis System. From the viewpoint of climate change, it is necessary to select a filtration system that takes climate change into account, not from the viewpoint of water quality removal efficiency and economic efficiency according to future water treatment applications, and it is necessary to select a water treatment filtration system more researches and improvements will be made for.

고도 하수처리장의 전과정평가에 따른 환경성 및 경제성 평가 (Evaluation of Environmental and Economic Impacts of Advanced Wastewater Treatment Plants with Life Cycle Assessment)

  • 표세희;김민정;이승철;유창규
    • Korean Chemical Engineering Research
    • /
    • 제52권4호
    • /
    • pp.503-515
    • /
    • 2014
  • 최근 하수처리장의 질소 및 인 방류수 수질기준이 강화되고 슬러지의 해양투기가 금지됨에 따라 기존 표준활성슬러지공법의 고도처리공법으로의 증설 및 새로운 하수슬러지 처리공법에 대한 환경성, 경제성 평가의 필요성이 증가하고 있다. 이러한 고도처리 및 슬러지 처리공법은 운영 단계뿐만 아니라 건설, 폐기를 포함한 전과정에 걸쳐 환경 전반에 영향을 미치며 경제적 비용을 소모하므로, 본 연구에서는 건설에서부터 폐기까지의 전과정을 고려하여 고도처리공정 및 슬러지 처리 공법의 환경성, 경제성을 평가하고자 한다. 고도처리공법으로 Anaerobic/Anoxic/Oxic ($A_2O$), Bamard Denitrification Phosphate (Bardenpho), Virginia Initiative Plant (VIP), Modified University of Cape Town (MUCT) 공법을, 슬러지 처리공법으로는 매립, 소각, 퇴비화를 선정하였다. 각 공법에 따른 환경성, 경제성 평가를 위하여 International organization for standardization (ISO)에서 제시하는 가이드라인을 따라 전과정평가를 수행하였으며, 전생애비용을 산정 비교하였다. 각 고도처리 공법에 대한 평가 결과, 환경영향 측면에서는 운영 단계에서의 생물학적 처리로 인한 온실가스 배출이, 경제성 측면에서는 운영 단계에서의 전력소모가 가장 많은 영향을 미치는 것으로 나타났다. 또한 가장 친환경적인 하수처리 및 슬러지 처리공법은 $A_2O$ 공법과 퇴비화로 환경에 가장 큰 영향을 미치는 CAS 공법과 매립에 비해 환경영향을 52% 줄일 수 있는 것으로 나타났다. 경제적인 측면에서는 가장 많은 비용을 소요하는 CAS 공법과 매립 적용 시에 비해 MUCT 공법과 퇴비화가 전생애비용을 62% 절약할 수 있음을 알 수 있었다. 본 연구를 통해 고도처리 공법으로의 증설 및 슬러지 처리에 대한 전과정을 고려하여 친환경적이며 경제적인 공법을 선정하기 위해 전과정평가를 수행하고 전생애비용을 산출하여 각 공법을 비교 및 평가하였으며, 전과정평가의 환경성 및 경제성에 중요한 영향인자를 분석하였다. 따라서 본 연구의 방법론을 통하여 환경부하 및 경비 절감을 고려한 고도처리공법의 개보수 공정 및 슬러지 공정 선택이 가능할 것으로 예상된다.

브롬화 난연제의 환경오염도 관리 방안 (Monitoring of Brominated Flame Retardants (BFRs) for the management of Their Contamination in Environments)

  • 김용범;이상훈;정용
    • 환경영향평가
    • /
    • 제14권2호
    • /
    • pp.83-96
    • /
    • 2005
  • Brominated flame retardants have the market share of 40%, comparing others because of their low cost and highly effective retardation against the flame. However, their toxic effects in human and properties of the accumulation in the environments have been issued among the international organization such as EU, OECD and etc. It, therefore, was surveyed the classification, toxic effects, and the usage of Brominated flame retardants, the trends for their managements in the world and Korea, and their contaminated levels in Korean Peninsula. In addition, the management directions for them were proposed. Penta, octa, and deca-BDE among brominated retardants will seem to be prohibited by the regulation as a flame retardants for plastics in Europe because of their toxic effects. Although Penta and Octa BDEs was used marginally in Korea, deca-BDE was 27% of brominated flame retardants (49,050 ton) which had been used in 2002. However, risk assessment for brominated retardants might not launched in Korea, yet. These reports demonstrate that toxic brominated retardants such as PBDEs will be assessed for their usage and the level of contamination in the environment in the area of the point sources like the industrial areas, incinerators and etc. However, the law to regulate the hazardous chemicals seems not to be dictated the monitoring of their contamination in the environment. We, therefore, suggest how to evaluate and to monitor the toxic contaminants with EIA (Environmental Impact Assessment) and LCA (Life Cycle Assessment) system. Further, to establish the management system of BFRs (such as the monitering of contamination levels in environments, life cycle assessment, and risk assessment for the toxic chemicals), It can be recommended the law to deal with the method analyzing chemicals will be established, which contains QA/QC (Quality Assurance and Quality Control) to evaluate the analytic capability of the companies to prepare EIS (Environment Impact Statement) or other institutes for analyzing chemicals.

LCA기법을 활용한 태양광 시스템의 자원효율성 및 자원요구량 예측 (Estimation of Resource Efficiency and Its Demand for Photovoltaic Systems Using the Life Cycle Assessment (LCA) Method)

  • 임지호;황용우;김준범;문진영
    • 대한환경공학회지
    • /
    • 제35권7호
    • /
    • pp.464-471
    • /
    • 2013
  • 본 연구에서는 LCA 기법으로 태양광 시스템 생산 시 소비되는 원료, 부원료, 에너지 등의 물질수지 자료를 분석하여 금속자원의 자원효율성 산정 및 필요금속자원량을 예측하였다. 태양광 시스템 생산 시 투입되는 금속자원의 자원효율성 분석결과 철 비철금속은 4가지 기술(SC-Si, MC-Si, CI(G)S, CdTe)에 대해 동일하게 납, 주석 순으로, 희유금속은 결정질 실리콘 시스템의 경우 갈륨, 레늄 순으로, 박막형 시스템의 경우 레늄, 로듐 순으로, 희토류는 4가지 기술에 대해 동일하게 가돌리늄, 사마리움 순으로 자원효율성이 높은 것으로 나타났다. 2030년까지 우리나라의 태양광 시스템의 증설에 필요한 금속자원량을 예측한 결과 자원순환에 의한 자체 수급량을 제외하고 알루미늄 2,545,670 ton, 구리 22,044 ton, 니켈 31 ton, 주석 1,695 ton 및 아연 92,069 ton이 필요한 것으로 나타났다.

건설단계에서의 철도시설물 온실가스저감방안연구 (A Research on the Greenhouse Gas Emission Reduction of Railway Structure Construction Stage)

  • 이철규;김종수
    • 한국철도학회논문집
    • /
    • 제14권5호
    • /
    • pp.425-432
    • /
    • 2011
  • 철도시설물 유형별 전과정 온실가스 배출량에 관한 연구결과를 분석한 결과 철도건설에 사용된 콘크리트가 주요 발생원임을 확인하였다. 친환경설계전략(ECODESIGN PILOT)을 활용하여 철도시설물의 제품유형을 분석한 결과에서도 철도시설물은 재료집약제품으로 분류되었다. 따라서, 본 연구에서는 건설재료측면에서 철도시설물의 온실가스배출량을 저감하는 방안을 도출하고 이를 철도현장에 시범, 적용함으로써 그 저감효과를 분석하였다. 연구에서 고려한 철도시설물의 온실가스 배출저감기술은 고로슬래그를 이용하여 시멘트 사용량을 저감한 친환경 콘크리트와 콘크리트 구조물의 수명을 보장할 수 있는 콘크리트 열화방지제이다. 그리고 설계단계에서 철도노선에 대한 온실가스배출량을 사전에 평가하고 예측할 수 있는 저탄소 철도노선 평가 및 설계기술이다.

Naphtha의 stream reforming에 의한 수소제조방법에 대한 전과정평가 (Life Cycle Assessment for Hydrogen Production Method using Stream Reforming of Naphtha)

  • 박희일;김익;이병권;허탁
    • 한국수소및신에너지학회논문집
    • /
    • 제13권1호
    • /
    • pp.3-12
    • /
    • 2002
  • In this study, it achieved life cycle assessment to estimate environmental performance for naphtha steam reforming that account for the production over 50% of total hydrogen output. Although hydrogen dosen't emit air emissions, especially, $CO_2$, a large of $CO_2$ is emitted in hydrogen production process. In the result of this study, it ascertained the truth that $CO_2$ is emitted at the rate of $6.3kg/kgH_2$ and that result from steam reforming reaction and use of fossil fuel in hydrogen manufacturing process. Above all, 57% of total $CO_2$ emissions is emitted in process of steam reforming of naphtha and so it knew that the principle of steam reforming is key issue in aspect to environment. Also, it compared hydrogen by fuel of fuel cell vehicle with gasoline fuel of general gasoline vehicle to analyze relative environment of hydrogen for fossil fuel during the life cycle. As the result, it might be difficult in improvement of environment because $CO_2$ emissions during the hydrogen manufacturing process is nearly the same with that during the use of gasoline.

체계적 문헌 고찰을 통한 패션 제품의 친환경 CMF 디자인 프로세스 분석 (A Systematic Review of Eco-CMF Design Processes for Fashion Products)

  • 이소현;강수경;박성진;고영아;박주연
    • 한국의류산업학회지
    • /
    • 제25권1호
    • /
    • pp.1-10
    • /
    • 2023
  • An eco-CMF design process is vital to the sustainable development of fashion products concerning both emotional and physical quality factors, thus extending the use phase of the product life cycle. Life cycle assessment (LCA) is widely used in other fields to evaluate environmental impact; However, the method is rarely adopted in fashion. While cooperating with design, technology, and the users, reflecting the CMF design process is an excellent approach to the sustainable development of fashion products. Moreover, it is likely to evoke favorable reactions in users toward products. Therefore, this study aimed to review the sustainable design strategies associated with CMF in the fashion industry. Using a systematic review, 135 papers that met the inclusion criteria were examined from peer-reviewed journal articles published between 1990 and 2022. They contained specific design processes or tools relevant to eco-CMF design. The search used the Web of Science database. After a rigorous search, the final six peer-reviewed journal articles were selected and underwent thorough content reviews. Then, the CMF design tools and frameworks for eco-design featured in the articles were carefully reviewed and analyzed. Finally, we proposed practical guidelines for the sustainable development of eco-CMF design in the fashion industry. The study outcomes revealed the need for concrete eco-CMF design processes, particularly for fashion products. Furthermore, more active research involving eco-CMF design processes for the sustainable environmental impact of fashion products is required.

유기농자재의 탄소배출량 산정을 위한 전과정평가(LCA) -참숯, 목초액, 미생물제재를 중심으로- (Life Cycle Assessment (LCA) for Calculation of the Carbon Emission Amount of Organic Farming Material -With Emphasis on Hardwood Charcoal, Grass Liquid and Microbial Agents-)

  • 윤성이;손보홍
    • 한국유기농업학회지
    • /
    • 제20권3호
    • /
    • pp.297-311
    • /
    • 2012
  • Since 1997, Korean Ministry of Knowledge Economy and Ministry of Environment have established data on some 400 basic raw and subsidiary materials and process like energy, petro-chemical, steel, cement, glass, paper, construction materials, transportation, recycling and disposal etc by initiating establishment of LCI database. Regarding agriculture, Rural Development Administration has conducted establishment of LCI database for major farm products like rice, barley, beans, cabbage and radish etc from 2009, and released that they would establish LCI database for 50 items until 2020 later on. The domestic LCI database for seeds, seedling, agrochemical, inorganic fertilizer and organic fertilizer etc is only at initial stage of establishment, so overseas LCI databases are brought and being used. However, since the domestic and overseas natural environments differ, they fall behind in reliability. Therefore, this study has the purpose to select organic farming materials, survey the production process for various types of organic farming materials and establish LCI database for the effects of greenhouse gas emitted during the process in order to select carbon basic units for agricultural production system compliant in domestic situation instead of relying on overseas data and apply life cycle assessment of greenhouse gas emitted by each crop during the process. As for selecting methods, in this study organic farming materials were selected in the method of direct observation of material and bottom-up method a survey method with focus on the organic farming materials admitted into rice production. For the basic unit of carbon emission amount by the production of 1kg of organic farming material, the software PASS 4.1.1 developed by Korea Accreditation Board under Ministry of Knowledge Economy was used. The study had the goal to ultimately provide basic unit to calculate carbon emission amount in executing many institutions like goal management system and carbon performance display system etc in agricultural sector to be conducted later on. As a result, emission basic units per 1kg of production were calculated to be 0.0088kg-$CO_2$ for charcoal, 0.1319kg-$CO_2$ for grass liquid, and 0.2804kg-$CO_2$ for microbial agent.

A Study on Analyzing the Factors Affecting Environmental Loads in the Planning Stage of Korean National Highway Projects

  • Park, Jin-Young;Park, June-Seok;Kim, Myeong-Jin;Kim, Sang-Ryong;Kim, Byung-Soo
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.508-512
    • /
    • 2015
  • Carbon emission calculation guidelines provided by the Korean Ministry of Land, Infrastructure and Transportation (MOLIT) and existing environmental load assessment studies have suggested a method for estimating based on the volume determined after the design development. Therefore they are not being helpful in the decision making of the environmental economics of road facilities in the planning stage in which specific information on construction output volume is lacking. Based on literature analysis of existing studies and consultation from a group of construction environmental professionals, 12 types of property information considered to be related to environmental load were selected from an inventory of information that will be available in the road planning stage. In addition, multiple regression analysis was performed based on the environmental load computed through the life cycle assessment (LCA) of 40 national highway project cases of Korea to deduce five impact factors of environmental load in the road facilities planning stage.

  • PDF

철도선형설계의 환경부하량 및 이산화탄소 발생량 평가 (Evaluation of the environmental load and the amount of $CO_2$ emissions on Design for railway Alignment)

  • 권석현;임광수;김민지
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.476-482
    • /
    • 2011
  • Following public expectations from the emergence of an international agreement with greater legal force after the expiration of the 2012 Kyoto Protocol, Korea is also making efforts to effectively and systematically initiate the mitigation policy and enforce the terms of the international climate change agreement. The majority of domestic industries are candidates for greenhouse gas emission regulation, thereby requiring the proposal of a method that effectively reduces environmental contaminate substances released from railway facilities, following the prediction of an increase in railway usage as an environment-friendly transportation method in the future. Accordingly, this study has quantitatively calculated the amount of released environmental contaminates through the life cycle assessment (LCA) on railway facility constructions, and has evaluated the environmental load and the amount of greenhouse gas emissions through the resulting values. The results of the LCA analysis showed that the amount of environmental load was the highest at the early stages of material implementation and construction, and that the value of global warming was viewed as the highest among the effects. As officially announced by the World Meteorological Organization and the United Nations Environment Program that $CO_2$ is the main culprit of global warming, the analytical values confirmed that the amount of $CO_2$ emissions accounted for more than half of the released greenhouse gases at 2.90E+04tons. The environmental load and $CO_2$ emission rates analyzed in this study are judged to be used in the deduction of the optimum environment-friendly method and quantitative environmental effect of railway facility constructions in the future, as the values can be evaluated based on their degree of environment friendliness.

  • PDF