• Title/Summary/Keyword: Life Cycle Assessment (LCA) method

Search Result 93, Processing Time 0.024 seconds

Practical Optimization Methods for Finding Best Recycling Pathways of Plastic Materials

  • Song, Hyun-Seob;Hyun, Jae Chun
    • Clean Technology
    • /
    • v.7 no.2
    • /
    • pp.99-107
    • /
    • 2001
  • Optimization methodologies have been proposed of find the best environment-friendly recycling pathways of plastic materials based on life-cycle assessment (LCA) methodology. The main difficulty in conducting this optimization study is that multiple environmental burdens have to be considered simultaneously as the cost functions. Instead of generating conservative Pareto or noninferior solutions following multi-objective optimization approaches, we have proposed some practical criteria on how to combine the different environmental burdens into a single measure. The obtained single objective optimization problem can then be solved by conventional nonlinear programming techniques or, more effectively, by a tree search method based on decision flows. The latter method reduces multi-dimensional optimization problems to a set of one-dimensional problems in series. It is expected the suggested tree search approach can be applied to many LCA studies as a new promising optimization tool.

  • PDF

Evaluation of Environmental Stress for Highway Construction Project by Life Cycle Assessment Method (전과정평가기법에 의한 도로건설공사 환경부하량 평가 연구)

  • Moon, Jinseok;Ju, Kibeom;Seo, MyoungBae;Kang, Leenseok
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.6
    • /
    • pp.83-91
    • /
    • 2014
  • The global community demands the reduction of environmental pollution such as greenhouse gas and carbon dioxide emissions. According to these requirements, the road construction project in the highest energy consuming industry is required the efficient way of reducing environmental pollution emissions. In this study, during the whole life cycle process, an environment impact assessment was performed for the several road construction projects in order to evaluate environmental stress through the road construction process. This study provides a proper process of environment impact assessment for life cycle assessment (LCA) analysis of road construction project, and figures the environmental stress regarding to the major construction materials for the case projects. In addition, this study conducted a sensitivity analysis for the key materials of environmental stress through the quantity analysis of major materials for the 1km section of a road construction. By this sensitivity analysis of total environmental stress change from the different volumes of constructing materials, it would be useful information for the environment impact assessment for the future road construction project.

Environmental Analysis of Waste Cable Recycling Process using a Life Cycle Assessment Method (전과정평가기법을 활용한 폐전선 재자원화 공정의 환경성 평가)

  • Jang, Mi-Sun;Seo, Hyo-Su;Park, Hee-Won;Hwang, Yong-Woo;Kang, Hong-Yoon
    • Resources Recycling
    • /
    • v.31 no.1
    • /
    • pp.37-45
    • /
    • 2022
  • The development of the electrical, electronic, and telecommunication industries has increased the share of electricity in total energy consumption. With the enforcement of the Act on the Promotion of the Development, Use, and Diffusion of New and Renewable Energy in 2021, the mandatory supply ratio of new and renewable energy is expected to expand, and the amount of waste cables generated in the stage of replacing and discarding cables used in the industry is also expected to increase. The purpose of this study was to quantify the environmental burden of waste cable recycling through the life cycle assessment (LCA) method. The results showed that the higher the amount of glue contained in the waste cable, the greater was the amount of fine dust and greenhouse gases generated. In addition, by assigning weights to 10 environmental burden items, it was confirmed that the marine aquatic eco-toxicity potential (MAETP) and human toxicity potential (HTP) had the greatest environmental burden. The main causes were identified as heptane and ethanol, which were the glue contained in the waste cable and the cleaning solutions used to remove them. Therefore, it is necessary to refrain from using glue in the cable production process and reduce the environmental burden by reducing the use of waste cable cleaning solutions used in the recycling process or using alternative materials.

GHG & Energy Goal Management and Low Carbon Railway (온실가스.에너지목표관리와 저탄소 철도)

  • Lee, Cheul-Kyu;Kim, Yong-Ki;Park, Duk-Sin;Lee, Jae-Young
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2961-2964
    • /
    • 2011
  • Greenhouse gas and energy reduction goal management system is announced to reduce national CO2 emission in 2011. The target business sector of the system has to follow the procedure of the system and get the assessment. The percentage of the national CO2 reduction goad is 30 % compared to the amounts of BAU. In railway business sector, 6 bodies are included in this system so that railway industry cannot stay and sustain its better position any more than other transportation industry. Most of the industry except Railway industry is struggling to develop its product more environmentally friendly and get the 3rd party certification like Eco-labelling and Carbon footprint. To get environmental certification, LCA method has to be applied because life cycle approach is needed to respond current environmental requirement. The purpose of this project is to facilitate railway vehicle manufacturer obtaining the environmental certification termed Korea EPD. By doing so, the environmental performance evaluation tool would be developed and modelled within the LCA framework and therefore applied especially for rail vehicle.

  • PDF

Life Cycle Assessment(LCA) of Rubber Recycling Process in Waste Tire (폐타이어 고무 재활용 공정의 전과정평가 연구)

  • Ahn, Joong Woo;Kim, Jin Kuk
    • Resources Recycling
    • /
    • v.27 no.1
    • /
    • pp.74-83
    • /
    • 2018
  • This study conducted the Life Cycle Assessment(LCA) on waste rubber recycling technology for recovering rubber product from the waste tires. Environmental impacts were assessed for the five categories of impacts: global warming, resource depletion, acidification, eutrophication, photochemical oxide production, and ozone layer depletion. When recycling 1ton of waste tire containing rubber, global warming impact was 1.77E+02 kg $CO_2-eq.$, resource depletion impact was 1.23E+00 kg Sb-eq., acidification impact was 5.92E-01 kg $SO_2-eq.$, eutrophication impact was 1.23E-01 kg $PO{_4}^{3-}-eq.$, photochemical oxide production impact was 3.42E-01 kg $C_2H_4-eq.$, and ozone layer depletion impact was 1.87E-04 kg CFC11-eq. In terms of overall environmental impacts, carbon, softener and electricity the greatest impact, so it is necessary to compare the environmental impacts of the raw materials to replace carbon and softener, and a method to reduce the filler usage in the process is needed. In addition, it is necessary to improve energy efficiency, change to low-energy sources, and apply renewable energy.

Estimation of Greenhouse Gas Emissions of Complex Fertilizers Production System by Using Life Cycle Assessment (전과정평가를 활용한 복합비료 생산 시스템의 온실가스 배출량 평가)

  • Jung, Soon-Chul;Park, Jeong-A;Huh, Jin-Ho;So, Kyu-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.256-262
    • /
    • 2011
  • Currently among the several methods to estimate an environmental impact of products, Life Cycle Assessment (LCA) technique is mostly used. The Ministry of Environment has been performed the carbon footprint labelling to give the carbon record of product by using this method. But the calculation of carbon footprint in primary agricultural product which is raw material of the processed food cannot be made because there is lack of methodology and LCI DB at agriculture sector. Therefore, LCA carried out to estimate carbon footprint, and established LCI DB for complex fertilizers (21-17-17 1 kg, 17-21-17 1 kg, 15-15-15 1 kg, Unspecified 1 kg) in the production system. The result of LCI DB analysis focussed on the GHG, and it was observed that the values of carbon footprint were $2.42E+00kg\;CO_2-eq.kg^{-1}$ for 21-17-17, $2.10E+00kg\;CO_2-eq.kg^{-1}$ for 17-21-17, $2.23E+00kg\;CO_2-eq.kg^{-1}$ for 15-15-15 and $3.56E+00kg\;CO_2-eq.kg^{-1}$ for Unspecified. For the analysis of LCIA (Life Cycle Impact Assessment) on complex fertilizers in the production system, the carbon footprint from pre-manufacturing phase is contributed to 98.96%, 98.81%, 98.88% and 99.30% on each complex fertilizer with 21-17-17, 17-21-17, 15-15-15, and Unspecified, respectively. These results will be used in basic data for estimation of agricultural greenhouse gas emissions.

A Study on The Evaluation Criteria of Carbon Emission and the Development of the Evaluation Method in Apartment House (공동주택을 대상으로 한 탄소배출 평가기준 구축 및 평가방법 개발)

  • Choi, Doo-Sung;Chun, Hung-Chan
    • KIEAE Journal
    • /
    • v.13 no.5
    • /
    • pp.79-88
    • /
    • 2013
  • This study creates the evaluation criteria to analyze the $CO_2$ emission quantity in the complex of apartment house among domestic buildings and proposes how to calculate the $CO_2$ emission quantity by the only simple information of apartment house. The study shows that in order to create the index of carbon emission evaluation criteria, $CO_2$ emission quantity for its input materials in these 27 apartment houses are 445,412g-$CO_2/m^2$ for apartment building, 474,322g-$CO_2/m^2$ for the basement parking lot, 483,523g-$CO_2/m^2$ for welfare facility, 729,957g-$CO_2/m^2$ for sales facility, 743,560g-$CO_2/m^2$ for other facility, 26,782g-$CO_2/m^2$ for public facility, 43,659g-$CO_2/m^2$ for landscape, 1,113g-$CO_2/m^2$ for indoor facility, 11,251g-$CO_2/m^2$ for outdoor facility and 891g-$CO_2/m^2$ for common temporary based on the average $CO_2$ emission by facility. We can also see the analysis data that in case of using the selected factors only, the rate of error is 7.51% comparing with the emission quantity by using simplified LCA method this study suggests for the whole range of apartment houses and the rate of error is average 3.24% using selective and main materials. And this it is evaluated that we can get the result which is similar to the actual $CO_2$ emission quantity with only the simple information about the apartment house.

A quantitative analysis of greenhouse gas emissions from the major offshore fisheries (주요 근해어업의 온실가스 배출량 정량적 분석)

  • BAE, Jaehyun;YANG, Yong-Su;KIM, Hyun-Young;HWANG, Bo-kyu;LEE, Chun-Woo;PARK, Subong;Lee, Jihoon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.55 no.1
    • /
    • pp.50-61
    • /
    • 2019
  • The concern on the greenhouse gas emissions is increasing globally. Especially, the greenhouse gas emission from fisheries is an important issue from the Paris Climate Change Accord in 2015. Furthermore, the Korean government has a plan to reduce the GHG emissions as 4.8% compared to the BAU in fisheries until 2020. However, the investigation on the GHG emissions from Korean fisheries rarely carried out consistently. Therefore, the quantitative analysis of GHG emissions from Korean fishery industry is necessary as a first step to find a relevant way to reduce GHG emissions from fisheries. The purpose of this research is to investigate which degree of GHG emitted from the major offshore fisheries such as offshore gillnet fishery, offshore longline fishery, offshore jigging fishery and anchovy drag net fishery. Here, we calculated the GHG emissions from the fisheries using the Life Cycle Assessment method. The system boundary and input parameters for each process level are defined for the LCA analysis. The fuel use coefficients of the fisheries are also calculated according to the fuel type. The GHG emissions from sea activities by the fisheries will be dealt with. Furthermore, the GHG emissions for the unit weight of fishes are calculated with consideration to the different consuming areas as well. The results will be helpful to understand the circumstances of GHG emissions from Korean fisheries.

A quantitative analysis of greenhouse gases emissions by multiple fisheries for catching the same species (hairtail and small yellow croaker) (동일 어종(갈치, 참조기) 어획에 대한 다수 어업별 온실가스 배출량 정량적 분석)

  • KANG, Kyoungmi;LEE, Jihoon;SHIN, Dongwon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.57 no.2
    • /
    • pp.149-161
    • /
    • 2021
  • The concern on the greenhouse gas emission is strongly increasing globally. In fishery industry section, the greenhouse gas emissions are an important issue according to The Paris Climate Change Accord in 2015. The Korean government has a plan to reduce the GHG emissions as 4.8% compared to the BAU in fisheries until 2020. Furthermore, the Korean government has also declared to achieve the carbon neutrality in 2050 at the Climate Adaptation Summit 2021. However, the investigation on the GHG emissions from Korean fisheries did not carry out extensively. Most studies on GHG emissions from Korean fishery have dealt with the GHG emissions by fishery classification so far. However, follow-up studies related to GHG emissions from fisheries need to evaluate the GHG emission level by species to prepare the adoption of environmental labels and declarations (ISO 14020). The purpose of this research is to investigate which degree of GHG emitted to produce the species (hairtail and small yellow croaker) from various fisheries. Here, we calculated the GHG emission to produce the species from the fisheries using the Life Cycle Assessment method. The system boundary and input parameters for each process level are defined for the LCA analysis. The fuel use coefficients of the fisheries for the species are also calculated according to the fuel type. The GHG emissions from sea activities by the fisheries will be dealt with. Furthermore, the GHG emissions for producing the unit weight species and annual production are calculated by fishery classification. The results will be helpful to understand the circumstances of GHG emissions from Korean fisheries.

A study on the estimation of the renewable energy certificates(REC) weight considering the life cycle assessment(LCA) of greenhouse gas emission (전과정(LCA) 온실가스 평가를 고려한 신재생에너지 공급인증서 가중치 산정 방안 연구)

  • Beak, Hun;Kim, Tae Sung
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.8
    • /
    • pp.173-182
    • /
    • 2020
  • The government continuously improves the RPS system to expand the supply of renewable energy, but there has been criticism that more environmental aspects should be considered to reduce GHG emission. REC weights are differentiated according to renewable energy sources. Greenhouse gas emission is one of the decisive factors, and its value is set by experts' opinion. This study assigns LCA to get accurate value of GHG emission. The LCA calculates emitted greenhouse gases from entire process of fuel production, transportation, power plant construction, operation, and decommission. This study suggests a method to change the greenhouse gas reduction effect from the existing qualitative method to the quantitative method and evaluates them. As a result, the evaluation score is changed, but the tier interval is so large that it does not affect the REC weight. Therefore, this study suggests the way that directly reflect the greenhouse gas reduction effect in the REC weight.