• Title/Summary/Keyword: Life Cycle Analysis

Search Result 2,048, Processing Time 0.026 seconds

Design of a Plant Life Cycle Data Management System for Plant Operation and Maintenance (플랜트 설계 및 운영 데이터 통합관리 시스템 설계)

  • Lee, Jae Hyun;Suh, Hyo Won
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.42 no.3
    • /
    • pp.241-248
    • /
    • 2016
  • Plant life cycle consists of design, construction, certification, operation, and maintenance phases, and various and enormous plant life cycle data is involved in each phase. Plant life cycle data should be linked with each other based on its proper relationships, so that plant operators can access necessary plant data during their regular operations and maintenance works. Currently, the relationships of plant life cycle data may not be defined explicitly, or they are scattered over several plant information systems. This paper proposes high level design of a plant life cycle data management system based on pre-defined plant life cycle database design. ISO-15926 standard is adapted for the database design. User-interface designs of the plant life cycle data management system are explained based on analysis of plant owners' requirements. A conceptual design of the database is also described with the entity-relationship diagram.

Life Cycle Cost Analysis of Steel Bridges on Its Paint System during Safe Life Under (강교의 도장방식에 따른 안전수명간 생애주기비용분석)

  • Han, Sang-Chul;Kim, Eun-Kyum;Cho, Sun-Kyu
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.2
    • /
    • pp.63-68
    • /
    • 2002
  • Life Cycle Cost analysis technique is introduced to evaluate cost-effectiveness of two paint systems of steel bridges. The systems are a conventional paint system and a galvanized paint system. The all costs during safe lift such as initial cost repainting costs, disposal costs are considered for the lift cycle cost analysis. The NIST model is used and BridgeLCC 1.0 developed by the NST is utilized as the lift cycle cost analysis tool. It is concluded that, in spite of expensive initial cost, the durable paint system may be cost-effective compared with conventional paint system.

The Influences of Family Life Cycle Stages and perceived Time Pressure on Strategies for Coping with Time Constraints in Hosuewife-Teachers (가족생활주기에 따른 교직주부의 시간제약지각이 시간제약대처전략에 미치는 영향)

  • 장윤옥
    • Journal of Families and Better Life
    • /
    • v.13 no.4
    • /
    • pp.165-180
    • /
    • 1995
  • The purpose of this study was to investigate the influences of family life cycle stages and perceived time pressure on strategies for coping with time constraints in housewife-teachers. The subjects of this study were 570 married women teachers who live with their husebands and children in junior and senior high schools in Taegu, A questionaire was used as survey method. Factor analysis and MANOVA were employed for data analysis and Scheffe test forpost-hoc analysis. The main findings were : First the effect of family life cycle stages on the use of personal time reducing strategies was different according to perceived time pressure. Second the effect of perceived time pressure on the use of personal time reducing strategies differed according to family life cycle stages. Third the use of strategies for coping with time contratins was found to be significantly different according to family life cycle stages, Forth there were significant differences in the use of strategies for coping with time constrainsts according to perceived time pressure.

  • PDF

Minimum life-cycle cost design of ice-resistant offshore platforms

  • Li, Gang;Zhang, Da-Yong;Yue, Qian-Jin
    • Structural Engineering and Mechanics
    • /
    • v.31 no.1
    • /
    • pp.11-24
    • /
    • 2009
  • In China, the oil and natural gas resources of Bohai Bay are mainly marginal oil fields. It is necessary to build both ice-resistant and economical offshore platforms. However, risk is involved in the design, construction, utilization, maintenance of offshore platforms as uncertain events may occur within the life-cycle of a platform under the extreme ice load. In this study, the optimum design model of the expected life-cycle cost for ice-resistant platforms based on cost-effectiveness criterion is proposed. Multiple performance demands of the structure, facilities and crew members, associated with the failure assessment criteria and evaluation functions of costs of construction, consequences of structural failure modes including damage, revenue loss, death and injury as well as discounting cost over time are considered. An efficient approximate method of the global reliability analysis for the offshore platforms is provided, which converts the implicit nonlinear performance function in the conventional reliability analysis to linear explicit one. The proposed life-cycle optimum design formula are applied to a typical ice-resistant platform in Bohai Bay, and the results demonstrate that the life-cycle cost-effective optimum design model is more rational compared to the conventional design.

Comparison and Analysis of P2P Botnet Detection Schemes

  • Cho, Kyungsan;Ye, Wujian
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.3
    • /
    • pp.69-79
    • /
    • 2017
  • In this paper, we propose our four-phase life cycle of P2P botnet with corresponding detection methods and the future direction for more effective P2P botnet detection. Our proposals are based on the intensive analysis that compares existing P2P botnet detection schemes in different points of view such as life cycle of P2P botnet, machine learning methods for data mining based detection, composition of data sets, and performance matrix. Our proposed life cycle model composed of linear sequence stages suggests to utilize features in the vulnerable phase rather than the entire life cycle. In addition, we suggest the hybrid detection scheme with data mining based method and our proposed life cycle, and present the improved composition of experimental data sets through analysing the limitations of previous works.

An Analysis on Cost Factor Reduction of Life Cycle for High Speed Train(KTX-1) Based on the Maintenance Information (유지보수정보를 활용한 고속철도차량(KTX-1) 수명주기비용 요소절감 분석)

  • Kim, Jae-Moon;Kim, Yang-Su;Chang, Chin-Young;Lee, Jong-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.2169-2170
    • /
    • 2011
  • This paper presents about the analysis on cost factor reduction using the life cycle cost model for motor block in the KTX-1. Until now, most life cycle cost of the system as a whole that has been studied. but in case of railway industry part, LCC studies are needed on the subsystem like a propulsion control system because subsystems are developed continuously localization. Therefore, In this paper presents cost breakdown structure for life cycle cost (LCC) estimation for localization development of propulsion control system (Motor Block) in high speed railway vehicle (KTX-1). Also to analysis LCC on motor block, it was analyzed physical breakdown structure (PBS) and preventive cost on propulsion control system in view of maintenance cost. Based on this, we describe life cycle cost on motor block of KTX-1.

  • PDF

The Effects of Slab Size on Pavement Life Cycle Cost

  • Parsons, Timothy A.;Hall, Jim W.Jr
    • International Journal of Highway Engineering
    • /
    • v.8 no.2 s.28
    • /
    • pp.49-54
    • /
    • 2006
  • The purpose of this study was to determine the effect of expansion joint spacing (slab size) on the life cycle costs of owning Portland Cement Concrete (PCC) airfield pavements. Previous research has shown that slab size has a statistically significant impact on pavement performance. A probabilistic life cycle cost analysis was performed to determine if the effect of slab size on pavement performance would affect the total cost of ownership of PCC pavements. Data from 48 Pavement Condition Index (PCI) inspections of military and civilian airfields were used to develop probability-of-distress-by-condition curves, which were then used to develop probabilistic cost-of-repair-by-condition curves. A present worth life cycle cost analysis was then performed for various slab sizes, using construction costs, rehabilitation costs, and maintenance costs. Maintenance costs were determined by assuming a condition deterioration rate appropriate for each slab size and applying the cost-by-condition curves. The probabilistic cost-of-repair-by-condition curves indicated that smaller slabs are more expensive to repair on a unit cost basis. Life cycle cost analysis showed that larger slabs have a higher total cost of ownership than smaller slabs due to a faster rate of deterioration.

  • PDF

Evaluation Standard of Cost-Effectiveness Analysis for Renew of Architectural Equipment in Public Building (공공건물 건축설비 갱신 계획시 비용-효율분석 평가기준에 관한 연구)

  • Jung, Soon-Sung
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.131-138
    • /
    • 2013
  • The purpose of this study is to suggest the evaluation standard of cost-effectiveness analysis for renew of architectural equipment in public building. Evaluation items of cost-effectiveness analysis for renew of architectural equipment in public building were used life cycle cost, energy consumption(ton of oil equivalent), green house gas emissions(ton of carbon dioxide) and maximum power demand. Life cycle cost is the process of making an economic assessment of an item, area, system, or facility by considering all significant costs of ownership over an economic life, expressed in terms of equivalent costs. The essence of life cycle costing is the analysis of equivalent costs of various alternative proposals. The social concern with green house gas and maximum power demand of architectural equipment field has been growing for the last several years.

Applying a Life-Cycle Assessment to the Ultra Pure Water Process of Semiconductor Manufacturing

  • Tien, Shiaw-Wen;Chung, Yi-Chan;Tsai, Chih-Hung;Yang, Yung-Kuang;Wu, Min-Chi
    • International Journal of Quality Innovation
    • /
    • v.6 no.3
    • /
    • pp.173-189
    • /
    • 2005
  • A life-cycle assessment (LCA) is based on the attention given to the environmental protection and concerning the possible impact while producing, making, and consuming products. It includes all environmental concerns and the potential impact of a product's life cycle from raw material procurement, manufacturing, usage, and disposal (that is, from cradle to grave). This study assesses the environmental impact of the ultra pure water process of semiconductor manufacturing by a life-cycle assessment in order to point out the heavy environmental impact process for industry when attempting a balanced point between production and environmental protection. The main purpose of this research is studying the development and application of this technology by setting the ultra pure water of semiconductor manufacturing as a target. We evaluate the environmental impact of the Precoat filter process and the Cation/Anion (C/A) filter process of an ultra pure water manufacturing process. The difference is filter material used produces different water quality and waste material, and has a significant, different environmental influence. Finally, we calculate the cost by engineering economics so as to analyze deeply the minimized environmental impact and suitable process that can be accepted by industry. The structure of this study is mainly combined with a life-cycle assessment by implementing analysis software, using SimaPro as a tool. We clearly understand the environmental impact of ultra pure water of semiconductor used and provide a promotion alternative to the heavy environmental impact items by calculating the environmental impact during a life cycle. At the same time, we specify the cost of reducing the environmental impact by a life-cycle cost analysis.

Life Cycle Cost Analysis of Primary Cooling System by Systematic Support Cost (각종지원금제도에 의한 냉열원시스템의 라이프 사이클 코스트 분석)

  • Kim, C.M.;Jung, S.S.;Choi, C.H.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.4
    • /
    • pp.97-106
    • /
    • 2002
  • The purpose of this study is to analyze the life cycle cost of primary cooling system by systematic support cost. Life Cycle Cost(LCC) is the process of making an economic assessment of an item, area, system, or facility by considering all significant costs of ownership over an economic life, expressed in terms of equivalent costs. The essence of life cycle costing is the analysis of equivalent costs of various alternative proposals. In order to select economical primary cooling system in early heat source plan stages, the research investigates cost items and cost characteristics during project process phases such as planning/design, construction, maintenance /management, and demolition/sell phases. The study also analyze the life cycle cost by capacity leading to suggest the most economical primary cooling system by systematic support cost.