• Title/Summary/Keyword: Lieberkuhn

Search Result 5, Processing Time 0.025 seconds

Feline panleukopenia virus infection in imported cats

  • Kang, Sang-Chul;Kang, Kyung-Il;Jean, Young-Hwa;Kim, Jae-Hoon
    • Korean Journal of Veterinary Research
    • /
    • v.47 no.4
    • /
    • pp.437-441
    • /
    • 2007
  • The cases of feline panleukopenia virus (FPLV) infection were diagnosed in three imported cats. All cats died within one week after mild emaciation, depression and anorexia. One cat showed yellowish watery diarrhea. At necropsy, all cats had segmental hemorrhage on the serosa and mucosa of the small intestine. Histopathologically, severe diffuse necro-hemorrhagic enteritis was observed in small intestine especially in jejunum and ileum. The crypts of Lieberkuhn were dilated and contained necrotic epithelia. Severely damaged epithelia of crypts were transformed into bizarre shapes. Multifocal lympholysis and lymphoid depletion were found in Peyer's patches and other lymphoid tissues. Direct fluorescent antibody (FA) test revealed the characteristic FPLV antigen in the cytoplasms of crypt epithelial cells. Based on the clinical signs, characteristic pathologic findings and FA test, these cases were diagnosed as FPLV infection. In our best knowledge, this study is the first case report for FPLV infection in imported cats in Korea.

Johannes Nathanael Lieberkühn (1711-1756): luminary eighteenth century anatomist and his illuminating discovery of intestinal glands

  • Sanjib Kumar Ghosh
    • Anatomy and Cell Biology
    • /
    • v.56 no.1
    • /
    • pp.25-31
    • /
    • 2023
  • Johannes Nathanael Lieberkühn was a prodigious anatomist whose meticulous experiments and precise detailing helped in comprehending the microscopic anatomy of digestive system during early part of eighteenth century. Notably, his inventions in the field of microscopy aptly complemented his quest for anatomical knowledge at microscopic level. He designed a reflector (Lieberkühn reflector) which enhanced the amount of focussed light leading to bright illumination of tissue specimen. He invented the solar microscope which provided excellent resolution of minute anatomical details. Lieberkühn discovered the digestive juice secreting tubular glands (glands of Lieberkühn) present at the base of intestinal villi producing epithelial invaginations (crypts of Lieberkühn). He also described the intricate juxtaposition of blood vessels in relation to a single intestinal villi. Moreover, through empirically designed experimental set up, Lieberkühn was able to demonstrate the flow of lymph from intestinal villi to collecting lymphatic vessels. Also, his grandiose collection of laboratory specimens involving vascular anatomy are a testimony of his untiring efforts in academia. His contributions were seminal in comprehending the anatomy of digestive system and paved the way for future revelations. His work unveiled the enormous scope of microanatomy in medical science and catalysed the advent of histological staining methods a century later.

Expression of Cdc25B mRNA in Duodenal Mucosa of Chicken

  • Qin, Junhui;Zhang, Hui;Bao, Huijun;Zhou, Qiang;Liu, Yi;Xu, Chunsheng;Chu, Xiaohong;Chen, Qiusheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.4
    • /
    • pp.530-536
    • /
    • 2010
  • Cdc25B is a mitotic regulator that might act as a starter phosphatase to initiate the positive feedback loop at the entry into mitotic (M) phase. In the present study, distribution of Cdc25B mRNA in duodenal mucosa of the chicken was demonstrated by means of in situ hybridization histochemistry (ISHH) using sense and antisense digoxigenin (DIG)-labeled RNA probes. The results showed that there were many labeled cells distributing in the duodenal mucosa of the adult chicken. Of these labeled cells, 81.60${\pm}$9.63% of Cdc25B mRNA positive cells was distributed in the basilar part and mid-portion of the intestinal gland and 36.21${\pm}$8.81% in the middle and basilar portion of villi of the small intestine of the chicken, respectively. Most of these labeled cells were positive in the regions of the stem cell and proliferation. The signals of ISHH decreased from basilar to upper part in the crypt of Lieberkuhn and weakened in the inferior villi of the duodenum. Moreover, the positive signals were both in the cytoplasm and cell nucleus. However, the labeled cells were negative in both the lamina muscularis mucosae and muscular layer. The results of ISHH suggested the existence of Cdc25B mRNA and vigorous proliferation activities in the duodenal mucosa of adult chicken, replenishing the cells which had sloughed off from the superior part of the villus. Our results provide some molecular evidence for a regular pattern of avian intestinal epitheliosis and functional partition and provide an approach to further study of the locations of Cdc25B in the chicken.

Correlation between goose circovirus and goose parvovirus with gosling feather loss disease and goose broke feather disease in southern Taiwan

  • Ting, Chiu-Huang;Lin, Chia-Ying;Huang, Yang-Chieh;Liu, Shyh-Shyan;Peng, Shao-Yu;Wang, Chen-Wei;Wu, Hung-Yi
    • Journal of Veterinary Science
    • /
    • v.22 no.1
    • /
    • pp.1.1-1.12
    • /
    • 2021
  • Background: Goslings in several Taiwanese farms experienced gosling feather loss disease (GFL) at 21-35 days and goose broke feather disease (GBF) at 42-60 days. The prevalence ranges from a few birds to 500 cases per field. It is estimated that about 12,000 geese have been infected, the morbidity is 70-80% and the mortality is 20-30%. Objectives: This study aims to investigate the pathogens that cause GFL and GBF. Focus on the study of the correlation between goose circovirus (GoCV) and goose parvovirus (GPV) with the goose feather loss in southern Taiwan. Furthermore, a phylogenetic tree was established to align the differences between southern and northern Taiwan and compare with virus strains from China and Europe. Methods: Samples were collected from animal hospitals. Molecular and microscopy diagnostics were used to examine 92 geese. Specific quantitative polymerase chain reaction (Q-PCR) assays are performed to evaluate GPV and GoCV viral loads and simultaneously evaluated the feather loss conditions in geese with the scoring method. Results: High prevalence of GoCV and GPV infection in geese showing signs of GFL and GBF. Inclusion body was detected in the feather follicles and Lieberkuhn crypt epithelial cells. The Q-PCR showed the high correlation between feather loss and viruses during 3rd-5th week. However, the infection was not detected using the same test in 60 healthy geese. Conclusions: Thus, GFL and GBF appear to be significantly closely related to GoCV and GPV. The geese feathers showed increasing recovery after being quarantined and disinfected.

Do Paneth Cells Regulate the Zinc Body Burden? (Zinc 대사와 관련된 Paneth 세포활성의 변화에 관한 조직화학적 연구)

  • Jo, Seung-Mook;Kim, Sung-Jun;Park, Seung-Kook;Kang, Tae-Cheon;Won, Moo-Ho
    • Applied Microscopy
    • /
    • v.30 no.4
    • /
    • pp.357-365
    • /
    • 2000
  • Paneth cells have been suggested to contribute to the elimination of excess metals into the intestinal lumen. The purpose of this study wat to investigate the changes of the zinc pools in rats subjected to functional loading with zinc salt by mean of both light and electron microscopical autometallography (AMG). Wistar rats 4 were administrated with zinc chloride (20 mg/kg body weight) intraperitoneally dissolved in 1 ml distilled water. The control group received 1 ml saline IP. After further one hour the animals were transcardially perfused with 0.4% sodium sulphide dissolved in 0.1 M PB fellowed by 3% glutaraldehyde solution for 10 minutes. Pieces of ileum were frozen with solid $CO_2$ and sectioned on a cryostat. The sections $(20{\mu}m)$ were autometallographically developed. Sections selected for EM were reembedded on top of a blank Epon block, from which ultrathin sections (100 nm) were cut. The ultrathin sections were double stained with uranyl acetate (30 min) and lead citrate (5 min), then examined under electron microscope. Studies of comparable sections from control and zinc loaded animals with the AMG selenium method gave quite different results. The control animals demonstrated a weakly positive staining in the cytoplasm of the Paneth cells. In the electron microscope the AMG silver grains were found to be located in the cytoplasm, while the electron dense secretary granules and other cell organelles were void of staining. Few AMG grains were located at the apical surface of the Paneth cells. In sections from zinc loaded rats, the AMG grains were seen in abundance in the lumen of the Lieberkuhn crypts at light microscopic levels. At EM levels the zinc revealing silver grains were located in the cytoplasm as in the controls, but much more AMG grains were shifted into the secretary granules. Furthermore, profound AMG grains were found in the lumen of the crypts and surrounding vessels. And a few grains were seen in the endothelium. The AMG technique demonstrated a pattern of AMG grains in the Paneth cells that strongly suggests a transport of zinc ions through these cells.

  • PDF