• Title/Summary/Keyword: LiMn₂O₄

Search Result 499, Processing Time 0.023 seconds

Enhanced Performance in a Lithium-ion Battery via the Crystal-aligned LiNi0.6Mn0.2Co0.2O2 and the Relevant Electrochemical Interpretation (결정배향 LiNi0.6Mn0.2Co0.2O2 전극활물질을 통한 리튬이차전지 성능 향상 및 이의 전기화학적 해석)

  • Cham, Kim
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.6
    • /
    • pp.451-458
    • /
    • 2022
  • Through the crystal alignment research based on the magnetic properties of LiNixMnyCo1-(x+y)O2 such as magnetic susceptibility and related anisotropy, a crystal aligned LiNi0.6Mn0.2Co0.2O2 electrode is obtained, in which the (00l) plane is frequently oriented perpendicular to the surface of a current collector. The crystal aligned LiNi0.6Mn0.2Co0.2O2 electrode steadily exhibits low electrode polarization properties during the charge/discharge process in a lithium-ion battery, thus affording an improved capacity compared to a pristine LiNi0.6Mn0.2Co0.2O2 electrode. The aligned LiNi0.6Mn0.2Co0.2O2 electrode may have an appropriate structural nature for fast lithium-ion transport due to the oriented (00l) plane, and thus it contributes to enhancing the battery performance. This enhancement is analyzed in terms of various electrochemical theories and experiment results; thus, it is verified to occur because of the considerably fast lithium-ion transport in the aligned LiNi0.6Mn0.2Co0.2O2 electrode.

Properties of charge/discharge in synthesis method or substituting transition element for Li-Mn Oxide (전이금속 치환 및 합성방법에 따른 Li-Mn 산화물의 충방전 특성)

  • Jee, Mi-Jung;Choi, Byung-Hyun;Lee, Dae-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.46-46
    • /
    • 2007
  • There has been rapid progress in the portable electronics industry. which has led to a great increase for a demand of portable, lightweight power sources. Lithium 2'nd batteries have met these demand. and many studies on the cahtod materials for the lithium 2,nd batteries have been reported during the last decade. Possible candidates for the cathode materials for lithium 2,nd batteries are $LiCoO_2$, $LiNiO_2$, and $LiMn_2O_4$. Currently $LiCoO_2$ is widely used. but $LiMn_2O_4$ is an excellent alternative material in view of its several advantages such a low cost as well as the wasy availability of raw materials and environmental benignity. In this study, find the most suitable synthesis method that satisfied high capacitor and stability cycle character, etc in Li-Mn oxide for 2'nd batteries. And also made an experiment on doping the $LiMn_2O_4$ spinel with a small amount of metal ions has a remarkable effect on the electrochemical properties and characterics of powder, BET, PSA, Porosity, etc.

  • PDF

The Research and Development Trend of Cathode Materials in Lithium Ion Battery (리튬이차전지용 양극재 개발 동향)

  • Park, Hong-Kyu
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.3
    • /
    • pp.197-210
    • /
    • 2008
  • The cathode materials for lithium ion battery have been developed in accordance with the battery performance. $LiCoO_2$ initially adapted at lithium ion battery is going to be useful even at the charging voltage of 4.3 V by surface treatment or doping which drastically improved the performance of $LiCoO_2$. On the other hand, the complicate and multiple functions of recent electronic equipments required higher operational voltage and higher capacity than ever, which is going to be driving force for developing new cathode materials. Some of them are $LiNi_{1-x}{M_xO_2}$, $Li[Ni_{x}Mn_{y}Co_{z}]O_{2}$, $Li[{Ni}_{1/2}{Mn}_{1/2}]O_{2}$. Other new type of cathode materials having high safety is also developed to apply for HEV (hybrid electrical vehicle) and power tool applications. ${LiMn}_{2}{O}_{4}$ and $LiFePO_4$ are famous for highly stable material, which are expected to give contribution to make safer battery. In near future, the various materials having both capacity and safety will be developed by new technology, such as solid solution composite.

Charge-discharge Properties by Cut-off Voltage Changes of Li(${Mn_{1-\delta}}{M_{\delta}$)$_2$$O_4$ and ${LiMn_2}{O_4}$in Li-ion Secondary Batteries (코발트와 니켈로 치환한 리튬이온 이차전지 Cathode, Li(${Mn_{1-\delta}}{M_{\delta}$)$_2$$O_4$${LiMn_2}{O_4}$의 Cut-off 전압 변화에 따른 충방전 특성)

  • 유광수;박재홍;이승원;조병원
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.5
    • /
    • pp.424-430
    • /
    • 2001
  • Cut-off 전압 변화에 따른 충방전 특성을 알아보기 위하여 Mn을 다른 전이 금속이 Co와 Ni로 소량 치환시킨 Li(M $n_{1-{\delta}}$ $n_{\delta}$)$_2$ $O_4$(M=Ni, Co, $\delta$=0, 0.05, 0.1, 0.2)를 고상 반응법으로 80$0^{\circ}C$에서 48시간 동안 유지하여 합성하였다. 충방전의 cut-off 전압은 2.5~4.4V, 3.0~4.5V, 3.5~4.5V, 3.5V~4.7V의 네 가지 전압범위고 하였다. 충방전 실험결과, Li(M $n_{1-{\delta}}$ $n_{\delta}$)$_2$ $O_4$의 용량은 각각 Co와 Ni의 $\delta$=0.1에서 최대를 보였다. Co 치환 조성 재료와 순물질 모두에서 최대의 용량을 보인 cut-off 전압대는 3.5~4.5V 이었는데 이때의 Li(M $n_{0.9}$ $Co_{0.1}$)$_2$ $O_4$와 LiM $n_2$ $O_4$의 초기 충전용량과 초기 방전용량은 각각 118, 119mAh/g과 114, 104mAh/g 이었다. 또한 모든 cut-off 전압대에서 Li(M $n_{0.9}$ $Co_{0.1}$)$_2$ $O_4$는 순수한 LiM $n_2$ $O_4$보다 더 높은 용량과 우수한 싸이클 성능을 보였으며 그 결과는 밀착형 전지구성에서도 일치하였다.하였다.

  • PDF

Charge/discharge characteristics by heat treatment condition of cathode active material LiMn$_2$O$_4$ for Li rechargeable batteries (리튬 2차 전지용 정극 활물질 LiMn$_2$O$_4$의 열처리 조건에 따른 충방전 특성)

  • 정인성;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.369-372
    • /
    • 1996
  • We prepared LiMn$_2$O$_4$ by reacting stoichiometric mixture of LiOH.$H_2O$ and MnO$_2$ (mole ratio 1 : 1) and heating at 80$0^{\circ}C$ for 24h, 36h, 48h, 60h and 70h. We obtained through X-ray diffraction that lattice parameter varied as function of heat treatment time. heated cathode active materials at 80$0^{\circ}C$ for 36h, (111)/(311) peak ratio was 0.37. It expected good charge/discharge characteristics. When (111)/(311) peak ratio was 0.37, it will be that crystal structure is farmed very well. In the result of charge/discharge test When heated at 80$0^{\circ}C$ for 36h, charge/discharge characteristic of LiMn$_2$O$_4$is the most property. It agree with our expectation.

  • PDF

Optical Properties of Stoichiometric Tb/Mn Co-doped LiNbO3 Single Crystals Dependent on Mn Concentration (Mn 첨가량 변화에 따른 Tb/Mn이 첨가된 화학양론조성 LiNbO3 단결정의 광학적 특성)

  • Lee, Sung-Mun;Shin, Tong-Ik;Kim, Geun-Young;Back, Seung-Wook;Yoon, Dae-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.1
    • /
    • pp.92-95
    • /
    • 2004
  • Using the Micro-Pulling Down (${\mu}$-PD), $MnO_2$ and $Tb_4O_7$ co-doped crack-free stoichiometric $LiNbO_3$ single crystals were grown in 1.0 mm diameter and 25-30 mm length for c-axis. The homogeneous distributions of $MnO_2$ and $Tb_4O_7$ concentration were confirmed by the Electron Probe Microanalysis (EPMA). Also, the infrared OH absorption band of the single crystals observed by using a Fourier Transform-Infrared Spectrophotometer (FT-IR) at room temperature and the photoluminescence spectra was measured with respect to the $MnO_2$ and $Tb_4O_7$ doping.

Electrochemical Properties and Estimation on Active Material LiMnO2 Synthesis for Secondary

  • Wee, Sung-Dong;Kim, Jong-Uk;Gu, Hal-Bon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.2
    • /
    • pp.35-39
    • /
    • 2003
  • This paper is contents on the orthorhombic crystalline calcined by the solid phase method with LiMnO$_2$ thin film structured as the result which an average pore diameter of power was 132.3${\AA}$ in porosity analysis. Voltage ranges are able to get the properties of charge and discharge for experimental results of LiMnO$_2$ thin film were 2.2V 4.3V. The current density and scan speed were 0. 1㎃/$\textrm{cm}^2$ and 0.2㎷/sec respectively. Properties of the charge and discharge are obtained by optimum experiment condition parameters. Li dense ratio of the LiMnO$_2$ thin film that discharged capacities were 87㎃h/g have been 96.9[ppm] at 670.784[nm] wavelength. The dense ratio of Mn analyzed to 837[ppm] at 257.610[nm] wavelength. It can be estimated the quality of the LiMnO$_2$ thin film as that the wrong LiMnO$_2$ thin film pulled up from cell of electrolyte and became dry it at 800$^{\circ}C$. The results of SEM and XRD were the same as that of original researchers.

The AC impedance of $LiM_{y}Mn_{2-y}O_{4}$cathode material by charge and discharge temperature (충방전 온도에 따른 $LiM_{y}Mn_{2-y}O_{4}$정극 활물질의 임피던스 특성 분석)

  • 정인성;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.351-354
    • /
    • 2000
  • AC impedance of LiM $n_2$ $O_4$ and LiM $g_{0.1}$M $n_{1.9}$ $O_4$ samples have been studied at various temperature with charge-discharge test. AC impedance of LiM $n_2$ $O_4$ measured at -2$0^{\circ}C$, room temperature and 5$0^{\circ}C$ revealed that initial impedance before charge-discharge test was gradually decreased and become small by becoming law temperature. It indicates that the Li ion diffusion and the transfer resistance of the cathode are related to the temperature of cycling. Impedance at high temperature was suddenly increased because Mn dissolution and decomposition of electrolyte had been increased during cycling, compared to impedance at low temperature. Therefore, charge-discharge capacity was suddenly decreased at high but was slowly at low. In LiM $g_{0.1}$M $n_{1.9}$ $O_4$, impedance and capacity were stability at room temperature than there at 5$0^{\circ}C$, too. Initial impedance at 5$0^{\circ}C$ before charge-discharge test was small and impedance was suddenly increased during cycling than that at room temperature.ure.ure.

  • PDF