• Title/Summary/Keyword: LiDAR Point Cloud

Search Result 135, Processing Time 0.025 seconds

Technical Development for Extraction of Discontinuities in Rock Mass Using LiDAR (LiDAR를 이용한 암반 불연속면 추출 기술의 개발 현황)

  • Lee, Hyeon-woo;Kim, Byung-ryeol;Choi, Sung-oong
    • Tunnel and Underground Space
    • /
    • v.31 no.1
    • /
    • pp.10-24
    • /
    • 2021
  • Rock mass classification for construction of underground facilities is essential to secure their stabilities. Therefore, the reliable values for rock mass classification from the precise information on rock discontinuities are most important factors, because rock mass discontinuities can affect exclusively on the physical and mechanical properties of rock mass. The conventional classification operation for rock mass has been usually performed by hand mapping. However, there have been many issues for its precision and reliability; for instance, in large-scale survey area for regional geological survey, or rock mass classification operation by non-professional engineers. For these reasons, automated rock mass classification using LiDAR becomes popular for obtaining the quick and precise information. But there are several suggested algorithms for analyzing the rock mass discontinuities from point cloud data by LiDAR scanning, and it is known that the different algorithm gives usually different solution. Also, it is not simple to obtain the exact same value to hand mapping. In this paper, several discontinuity extract algorithms have been explained, and their processes for extracting rock mass discontinuities have been simulated for real rock bench. The application process for several algorithms is anticipated to be a good reference for future researches on extracting rock mass discontinuities from digital point cloud data by laser scanner, such as LiDAR.

Track Initiation and Target Tracking Filter Using LiDAR for Ship Tracking in Marine Environment (해양환경에서 선박 추적을 위한 라이다를 이용한 궤적 초기화 및 표적 추적 필터)

  • Fang, Tae Hyun;Han, Jungwook;Son, Nam-Sun;Kim, Sun Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.2
    • /
    • pp.133-138
    • /
    • 2016
  • This paper describes the track initiation and target-tracking filter for ship tracking in a marine environment by using Light Detection And Ranging (LiDAR). LiDAR with three-dimensional scanning capability is more useful for target tracking in the short to medium range compared to RADAR. LiDAR has rotating multi-beams that return point clouds reflected from targets. Through preprocessing the cluster of the point cloud, the center point can be obtained from the cloud. Target tracking is carried out by using the center points of targets. The track of the target is initiated by investigating the normalized distance between the center points and connecting the points. The regular track obtained from the track initiation can be maintained by the target-tracking filter, which is commonly used in radar target tracking. The target-tracking filter is constructed to track a maneuvering target in a cluttered environment. The target-tracking algorithm including track initiation is experimentally evaluated in a sea-trial test with several boats.

Improved LiDAR-Camera Calibration Using Marker Detection Based on 3D Plane Extraction

  • Yoo, Joong-Sun;Kim, Do-Hyeong;Kim, Gon-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2530-2544
    • /
    • 2018
  • In this paper, we propose an enhanced LiDAR-camera calibration method that extracts the marker plane from 3D point cloud information. In previous work, we estimated the straight line of each board to obtain the vertex. However, the errors in the point information in relation to the z axis were not considered. These errors are caused by the effects of user selection on the board border. Because of the nature of LiDAR, the point information is separated in the horizontal direction, causing the approximated model of the straight line to be erroneous. In the proposed work, we obtain each vertex by estimating a rectangle from a plane rather than obtaining a point from each straight line in order to obtain a vertex more precisely than the previous study. The advantage of using planes is that it is easier to select the area, and the most point information on the board is available. We demonstrated through experiments that the proposed method could be used to obtain more accurate results compared to the performance of the previous method.

Land cover classification using LiDAR intensity data and neural network

  • Minh, Nguyen Quang;Hien, La Phu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.4
    • /
    • pp.429-438
    • /
    • 2011
  • LiDAR technology is a combination of laser ranging, satellite positioning technology and digital image technology for study and determination with high accuracy of the true earth surface features in 3 D. Laser scanning data is typically a points cloud on the ground, including coordinates, altitude and intensity of laser from the object on the ground to the sensor (Wehr & Lohr, 1999). Data from laser scanning can produce products such as digital elevation model (DEM), digital surface model (DSM) and the intensity data. In Vietnam, the LiDAR technology has been applied since 2005. However, the application of LiDAR in Vietnam is mostly for topological mapping and DEM establishment using point cloud 3D coordinate. In this study, another application of LiDAR data are present. The study use the intensity image combine with some other data sets (elevation data, Panchromatic image, RGB image) in Bacgiang City to perform land cover classification using neural network method. The results show that it is possible to obtain land cover classes from LiDAR data. However, the highest accurate classification can be obtained using LiDAR data with other data set and the neural network classification is more appropriate approach to conventional method such as maximum likelyhood classification.

Dynamic Object Detection Architecture for LiDAR Embedded Processors (라이다 임베디드 프로세서를 위한 동적 객체인식 아키텍처 구현)

  • Jung, Minwoo;Lee, Sanghoon;Kim, Dae-Young
    • Journal of Platform Technology
    • /
    • v.8 no.4
    • /
    • pp.11-19
    • /
    • 2020
  • In an autonomous driving environment, dynamic recognition of objects is essential as the situation changes in real time. In addition, as the number of sensors and control modules built into an autonomous vehicle increases, the amount of data the central control unit has to process also rapidly increases. By minimizing the output data from the sensor, the load on the central control unit can be reduced. This study proposes a dynamic object recognition algorithm solely using the embedded processor on a LiDAR sensor. While there are open source algorithms to process the point cloud output from LiDAR sensors, most require a separate high-performance processor. Since the embedded processors installed in LiDAR sensors often have resource constraints, it is essential to optimize the algorithm for efficiency. In this study, an embedded processor based object recognition algorithm was developed for autonomous vehicles, and the correlation between the size of the point clouds and processing time was analyzed. The proposed object recognition algorithm evaluated that the processing time directly increased with the size of the point cloud, with the processor stalling at a specific point if the point cloud size is beyond the threshold

  • PDF

Box Feature Estimation from LiDAR Point Cluster using Maximum Likelihood Method (최대우도법을 이용한 라이다 포인트군집의 박스특징 추정)

  • Kim, Jongho;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.4
    • /
    • pp.123-128
    • /
    • 2021
  • This paper present box feature estimation from LiDAR point cluster using maximum likelihood Method. Previous LiDAR tracking method for autonomous driving shows high accuracy about velocity and heading of point cluster. However, Assuming the average position of a point cluster as the vehicle position has a lower accuracy than ground truth. Therefore, the box feature estimation algorithm to improve position accuracy of autonomous driving perception consists of two procedures. Firstly, proposed algorithm calculates vehicle candidate position based on relative position of point cluster. Secondly, to reflect the features of the point cluster in estimation, the likelihood of the particle scattered around the candidate position is used. The proposed estimation method has been implemented in robot operating system (ROS) environment, and investigated via simulation and actual vehicle test. The test result show that proposed cluster position estimation enhances perception and path planning performance in autonomous driving.

Automated Construction of IndoorGML Data Using Point Cloud (포인트 클라우드를 이용한 IndoorGML 데이터의 자동적 구축)

  • Kim, Sung-Hwan;Li, Ki-Joune
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.611-622
    • /
    • 2020
  • As the advancement of technologies on indoor positioning systems and measuring devices such as LiDAR (Light Detection And Ranging) and cameras, the demands on analyzing and searching indoor spaces and visualization services via virtual and augmented reality have rapidly increasing. To this end, it is necessary to model 3D objects from measured data from real-world structures. In addition, it is important to store these structured data in standardized formats to improve the applicability and interoperability. In this paper, we propose a method to construct IndoorGML data, which is an international standard for indoor modeling, from point cloud data acquired from LiDAR sensors. After examining considerations that should be addressed in IndoorGML data, we present a construction method, which consists of free space extraction and connectivity detection processes. With experimental results, we demonstrate that the proposed method can effectively reconstruct the 3D model from point cloud.

Construction of 3D Spatial Information of Vertical Structure by Combining UAS and Terrestrial LiDAR (UAS와 지상 LiDAR 조합에 의한 수직 구조물의 3차원 공간정보 구축)

  • Kang, Joon-Oh;Lee, Yong-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.49 no.2
    • /
    • pp.57-66
    • /
    • 2019
  • Recently, as a part of the production of spatial information by smart cities, three-dimensional reproduction of structures for reverse engineering has been attracting attention. In particular, terrestrial LiDAR is mainly used for 3D reproduction of structures, and 3D reproduction research by UAS has been actively conducted. However, both technologies produce blind spots due to the shooting angle. This study deals with vertical structures. 3D model implemented through SfM-based image analysis technology using UAS and reproducibility and effectiveness of 3D models by terrestrial LiDAR-based laser scanning are examined. In addition, two 3D models are merged and reviewed to complement the blind spot. For this purpose, UAS based image is acquired for artificial rock wall, VCP and check point are set through GNSS equipment and total station, and 3D model of structure is reproduced by using SfM based image analysis technology. In addition, Through 3D LiDAR scanning, the 3D point cloud of the structure was acquired, and the accuracy of reproduction and completeness of the 3D model based on the checkpoint were compared and reviewed with the UAS-based image analysis results. In particular, accuracy and realistic reproducibility were verified through a combination of point cloud constructed from UAS and terrestrial LiDAR. The results show that UAS - based image analysis is superior in accuracy and 3D model completeness and It is confirmed that accuracy improves with the combination of two methods. As a result of this study, it is expected that UAS and terrestrial LiDAR laser scanning combination can complement and reproduce precise three-dimensional model of vertical structure, so it can be effectively used for spatial information construction, safety diagnosis and maintenance management.

Noncontact measurements of the morphological phenotypes of sorghum using 3D LiDAR point cloud

  • Eun-Sung, Park;Ajay Patel, Kumar;Muhammad Akbar Andi, Arief;Rahul, Joshi;Hongseok, Lee;Byoung-Kwan, Cho
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.3
    • /
    • pp.483-493
    • /
    • 2022
  • It is important to improve the efficiency of plant breeding and crop yield to fulfill increasing food demands. In plant phenotyping studies, the capability to correlate morphological traits such as plant height, stem diameter, leaf length, leaf width, leaf angle and size of panicle of the plants has an important role. However, manual phenotyping of plants is prone to human errors and is labor intensive and time-consuming. Hence, it is important to develop techniques that measure plant phenotypic traits accurately and rapidly. The aim of this study was to determine the feasibility of point cloud data based on a 3D light detection and ranging (LiDAR) system for plant phenotyping. The obtained results were then verified through manually acquired data from the sorghum samples. This study measured the plant height, plant crown diameter and the panicle height and diameter. The R2 of each trait was 0.83, 0.94, 0.90, and 0.90, and the root mean square error (RMSE) was 6.8 cm, 1.82 cm, 5.7 mm, and 7.8 mm, respectively. The results showed good correlation between the point cloud data and manually acquired data for plant phenotyping. The results indicate that the 3D LiDAR system has potential to measure the phenotypes of sorghum in a rapid and accurate way.

Real-time 3D multi-pedestrian detection and tracking using 3D LiDAR point cloud for mobile robot

  • Ki-In Na;Byungjae Park
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.836-846
    • /
    • 2023
  • Mobile robots are used in modern life; however, object recognition is still insufficient to realize robot navigation in crowded environments. Mobile robots must rapidly and accurately recognize the movements and shapes of pedestrians to navigate safely in pedestrian-rich spaces. This study proposes real-time, accurate, three-dimensional (3D) multi-pedestrian detection and tracking using a 3D light detection and ranging (LiDAR) point cloud in crowded environments. The pedestrian detection quickly segments a sparse 3D point cloud into individual pedestrians using a lightweight convolutional autoencoder and connected-component algorithm. The multi-pedestrian tracking identifies the same pedestrians considering motion and appearance cues in continuing frames. In addition, it estimates pedestrians' dynamic movements with various patterns by adaptively mixing heterogeneous motion models. We evaluate the computational speed and accuracy of each module using the KITTI dataset. We demonstrate that our integrated system, which rapidly and accurately recognizes pedestrian movement and appearance using a sparse 3D LiDAR, is applicable for robot navigation in crowded spaces.