• Title/Summary/Keyword: LiDAR 자료

Search Result 290, Processing Time 0.028 seconds

Land Use Classification in Very High Resolution Imagery by Data Fusion (영상 융합을 통한 고해상도 위성 영상의 토지 피복 분류)

  • Seo, Min-Ho;Han, Dong-Yeob;Kim, Yong-Il
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.17-22
    • /
    • 2005
  • Generally, pixel-based classification, utilize the similarity of distances between the pixel values in feature space, is applied to land use mapping using satellite remote sensing data. But this method is Improper to be applied to the very high resolution satellite data (VHRS) due to complexity of the spatial structure and the variety of pixel values. In this paper, we performed the hierarchical classification of VHRS imagery by data fusion, which integrated LiDAR height and intensity information. MLC and ISODATA methods were applied to IKONOS-2 imagery with and without LiDAR data prior to the hierarchical classification, and then results was evaluated. In conclusion, the hierarchical method with LiDAR data was the superior than others in VHRS imagery and both MLC and ISODATA classification with LiDAR data were better than without.

  • PDF

Shoreline Change Analysis of Haeundae Beach Using Airborne LiDAR Survey (항공 LiDAR 측량을 이용한 해운대 해안의 해안선 변화 분석)

  • Lee, Jae One;Kim, Yong Suk;We, Gwang Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4D
    • /
    • pp.561-567
    • /
    • 2008
  • In this study, shoreline change was analyzed by RTK-GPS and advanced airborne LiDAR survey. For extraction of coastline, first of all, tide correction was conducted at all RTK-GPS points through the comparing with the corresponding tidal height, and cross section providing coastline was produced using Autocad Civil3D program. Comparing with two results of RTK-GPS (first, 29 Aug 2007; second, 6 Oct 2007) surveys, coastline of the first result had been decreased about 21m compare with that of the second. And it was also demonstrated that the length of coastline by the first RTK-GPS was 15m shorter than that by the airborne LiDAR survey (Dec. 2006). In addition, we recoquized that the erosion appeared in the top right-hand (dock area); the sediment in the bottom left-hand (Chosun beach area) of the Haeundae beach. As a result, therefore, it was learned that artificial sand filling for beach open and natural effects such as a typhoon, current drift, wind direction gave cause for area changes and coastline.

Time Series Coastline Change Analysis of Haeundae Beach (해운대 해안의 시기별 해안선 변화량 분석)

  • Lee, Jae One;Kim, Yong Suk;Lee, In Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5D
    • /
    • pp.655-662
    • /
    • 2009
  • The monitoring for analyzing coastline variations throughout many years is conducted in this study. Haeundae Beach is selected as a test area. We have collected RTK-GPS survey data, airborne LiDAR survey data from Sept. 2008 to 2005. We've done airborne LiDAR survey 2009 to 2006 and we would analyze coastline changes time series through interactive comparison analysis. The mean coastline distance of Haeundae shore is 1,347m (RTK-GPS) by airborne LiDAR survey (2 times). Coastline distance is decreased approximately 4.5% than mean distance in the November survey of 2008. We know right and left sides of the coastline are eroded and the center section shows us the littoral deposit of 3~7m toward sea. It turns out that the sand both sides is transported to the center section by a wave and tide and we know the coastline distance is getting smaller but the coastline width is getting longer like 2~7m.

Preprocessing Methods and Analysis of Grid Size for Watershed Extraction (유역경계 추출을 위한 DEM별 전처리 방법과 격자크기 분석)

  • Kim, Dong-Moon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.1
    • /
    • pp.41-50
    • /
    • 2008
  • Recent progress in state-of-the-art geospatial information technologies such as digital mapping, LiDAR(Light Detection And Ranging), and high-resolution satellite imagery provides various data sources fer Digital Elevation Model(DEM). DEMs are major source to extract elements of the hydrological terrain property that are necessary for efficient watershed management. Especially, watersheds extracted from DEM are important geospatial database to identify physical boundaries that are utilized in water resource management plan including water environmental survey, pollutant investigation, polluted/wasteload/pollution load allocation estimation, and water quality modeling. Most of the previous studies related with watershed extraction using DEM are mainly focused on the hydrological elements analysis and preprocessing without considering grid size of the DEMs. This study aims to analyze accuracy of the watersheds extracted from DEMs with various grid sizes generated by LiDAR data and digital map, and appropriate preprocessing methods.

3D GIS Modelling Using Airborne Integrated Rapid Mapping System (AIR-MS(Airborne Integrated Rapid Mapping System)를 이용한 3D GIS 모델링)

  • Sohn, Hong-Gyoo;Yun, Kong-Hyun;Kim, Gi-Tae;Seo, Il-Hong
    • 한국지형공간정보학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.123-128
    • /
    • 2004
  • 최근 디지털 카메라(Digital camera), 다중/고분광 영상(Mumltispectral/Hyperspectral image), LiDAR(Light Detection and Ranging), InSAR(Interferometric SAR)와 같이 지상을 보다 상세하고 높은 정확도로 지상을 매핑할 수 있는 센서들이 출현하고 있다. 이러한 다양한 정보 취득 자료를 충분히 활용하여 통합하기 위해서는 영상에 대하여 정확한 기하보정 또는 정사영상의 제작과 LiDAR 자료와 같은 경우 평면위치의 오차를 조정하여 다중자료들 간의 정확한 지형보정(Coregistration)이 필요하다. 본 연구에서는 AIR-MS 자료를 이용하여 즉, 항공기로부터 취득한 LiDAR(Height와 강도(Intensity) 자료), digital camera을 통합하고, 기존의 컬러항공사진 및 1:1000 수치지도를 이용하여 3D GIS 자료의 생성을 시도하였다.

  • PDF

The Accuracy Evaluation of Digital Elevation Models for Forest Areas Produced Under Different Filtering Conditions of Airborne LiDAR Raw Data (항공 LiDAR 원자료 필터링 조건에 따른 산림지역 수치표고모형 정확도 평가)

  • Cho, Seungwan;Choi, Hyung Tae;Park, Joowon
    • Journal of agriculture & life science
    • /
    • v.50 no.3
    • /
    • pp.1-11
    • /
    • 2016
  • With increasing interest, there have been studies on LiDAR(Light Detection And Ranging)-based DEM(Digital Elevation Model) to acquire three dimensional topographic information. For producing LiDAR DEM with better accuracy, Filtering process is crucial, where only surface reflected LiDAR points are left to construct DEM while non-surface reflected LiDAR points need to be removed from the raw LiDAR data. In particular, the changes of input values for filtering algorithm-constructing parameters are supposed to produce different products. Therefore, this study is aimed to contribute to better understanding the effects of the changes of the levels of GroundFilter Algrothm's Mean parameter(GFmn) embedded in FUSION software on the accuracy of the LiDAR DEM products, using LiDAR data collected for Hwacheon, Yangju, Gyeongsan and Jangheung watershed experimental area. The effect of GFmn level changes on the products' accuracy is estimated by measuring and comparing the residuals between the elevations at the same locations of a field and different GFmn level-produced LiDAR DEM sample points. In order to test whether there are any differences among the five GFmn levels; 1, 3, 5, 7 and 9, One-way ANOVA is conducted. In result of One-way ANOVA test, it is found that the change in GFmn level significantly affects the accuracy (F-value: 4.915, p<0.01). After finding significance of the GFmn level effect, Tukey HSD test is also conducted as a Post hoc test for grouping levels by the significant differences. In result, GFmn levels are divided into two subsets ('7, 5, 9, 3' vs. '1'). From the observation of the residuals of each individual level, it is possible to say that LiDAR DEM is generated most accurately when GFmn is given as 7. Through this study, the most desirable parameter value can be suggested to produce filtered LiDAR DEM data which can provide the most accurate elevation information.

Analysis of Forest Fire Damage Using LiDAR Data and SPOT-4 Satellite Images (LiDAR 자료 및 SPOT-4 위성영상을 활용한 산불피해 분석)

  • Song, Yeong Sun;Sohn, Hong Gyoo;Lee, Seok Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.527-534
    • /
    • 2006
  • This study estimated the forest damage of Kangwon-Do fire disaster occurred April 2005. For the estimation, the delineation of fire damaged area was performed using SPOT-4 satellite image and DSM (Digital surface model)/DTM (Digital Terrain Model) was generated by airborne and ground LiDAR data to calculate forests height. The damaged amount of money was calculated in forest area using stand volume formula, combining the canopy height from forest height model and digital stock map. The total forest damage amounted to 3.9 billion won.

Improvement of Precision for Measuring Individual Trees using Aerial LiDAR and Terrestrial Laser Scanner (항공 LiDAR와 지상 Laser Scanner를 이용한 개체목 측정의 정확도 향상)

  • Jung, Seung-Eun;Lee, Woo-Kyun;Kawk, Doo-Ahn;Choi, Sung-Ho;Kwak, Han-Bin;Kim, So-Ra
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2009.04a
    • /
    • pp.246-248
    • /
    • 2009
  • 기존의 항공사진 및 위성사진을 활용한 원격탐사방법은 기상조건에 따른 제약과 3차원적 수직구조 관한 정보 수집에 한계가 있다. 따라서 보다 정확하고 신속한 산림자원 정보를 획득하기 위해서는 새로운 기술적 접근이 필요하다. 3차원 측정이 가능한 LiDAR의 특성을 이용하면 기존 방법의 부정확성과 비효율성을 상당부분 극복 할 수 있다. 본 연구에서는 지상 Laser Scanner 와 항공 LiDAR를 이용하여 개체목의 3차원 구조를 예측하여 수고, 지하고, 수관면적, 수관체적을 추정하고 결과를 비교하였다. 지상 Laser Scanner에 의한 측정치를 참조자료로 하여 항공 LiDAR의 개체목 측정 정확성을 향상 시킬 수 있는 보정식을 최종적으로 개발하였다.

  • PDF

Monitoring Land Cover Changes in Nakdong River Basins Using Multi-temporal Landsat Imageries and LiDAR Data (다중시기에 촬영된 Landsat 영상과 LiDAR 자료를 활용한 낙동강 유역의 토지 피복 변화 모니터링)

  • Choung, Yun Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.242-242
    • /
    • 2015
  • Monitoring the land cover changes in Nakdong River Basins using the multi-temporal remote sensing datasets is necessary for preserving properties in the river basins and monitoring the environmental changes in the river basins after the 4 major river restoration project. This research aims to monitor the land cover changes using the multi-temporal Landsat imageries and the airborne topographic LiDAR data. Firstly, the river basin boundaries are determined by using the LiDAR data, and the multiple river basin imageries are generated from the multi-temporal Landsat imageries by using the river basin boundaries. Next the classification method is employed to identify the multiple land covers in the generated river basin imageries. Finally, monitoring the land cover changes is implemented by comparing the differences of the same clusters in the multi-temporal river basin imageries.

  • PDF