• Title/Summary/Keyword: Li-Ti

Search Result 668, Processing Time 0.027 seconds

A study on the enhancement of refractive index in Ti:LiTaO$_{3}$ optical waveguides by Zn-vapor diffusion (Zn-Vapor확산에 의한 Ti:LiTaO$_{3}$ 광도파로의 굴절률 증가에 관한 연구)

  • 정홍식;정영식
    • Electrical & Electronic Materials
    • /
    • v.9 no.3
    • /
    • pp.298-303
    • /
    • 1996
  • A double diffusion technique is developed to enhance the effective mode index of optical waveguides in $LiTaO_3$. It consists of Zn diffusion from the vapor phase at relatively low temperatures (750->$800^{\circ}C$), into waveguides initially produced by Ti indiffusion at higher temperature (1150->$1200^{\circ}C$). Both X- and Z-cut substrates are investigated. A model that combines profiles of both diffusion is formulated to calculate the expected effective index values for planar waveguides. Good agreement is found between experimental results and model predictions which assume that the initial Ti profile is not affected by the lower temperature Zn diffusion. Effective index enhancements as high as 0.005 and 0.003 are obtained by this method for the fundamental extraordinary and ordinary modes, respectively.

  • PDF

Microwave Dielectric Properties of (1-X) ${Na}_{1/2}{Sm}_{1/2}TiO_3-X\;{Li}_{1/2}{Nd}_{1/2}TiO_3$ Ceramics ((1-X) ${Na}_{1/2}{Sm}_{1/2}TiO_3-X\;{Li}_{1/2}{Nd}_{1/2}TiO_3$ 세라믹스의 고주파 유전특성)

  • Yun, Jung-Rag;Hong, Suk-Kyung;Kim, Kyung-Yong
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1103-1105
    • /
    • 1993
  • Microwave characteristics of the system (1-X) ${Na}_{1/2}{Sm}_{1/2}TiO_3$[NST]-X ${Li}_{1/2}{Nd}_{1/2}TiO_3$[LNT] were investigated. The dielectric constant and unloaded Q were 86,1950 respectively for NST at 3GHz and 80,500 for LNT. 0.4 NST - 0.6 LNT system has the dielectric constant ${\varepsilon}r$=86.2, Q=930(3GHz), temperature coefficient of the resonant frequency ${\tau}f$ = 8 ppm/$^{\circ}C$ when sintered at $1450^{\circ}C$ for 2h.

  • PDF

Na-Ion Anode Based on Na(Li,Ti)O2 System: Effects of Mg Addition

  • Kim, Soo Hwa;Bae, Dong-Sik;Kim, Chang-Sam;Lee, June Gunn
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.3
    • /
    • pp.282-287
    • /
    • 2016
  • This study involves enhancing the performance of the $Na(Li,Ti)O_2$ system as an Na-ion battery anode with the addition of Mg, which partially replaces Li ions. We perform both computational and experimental approaches to achieve a higher reversible capacity and a faster transport of Na ions for the devised system. Computational results indicate that the $Na(Li,Mg,Ti)O_2$ system can provide a lower-barrier path for Na-ion diffusion than can a system without the addition of Mg. Experimentally, we synthesize various $Na_z(Li_y,Mg_x,Ti)O_2$ systems and evaluate their electrochemical characteristics. In agreement with the theoretical study, Mg addition to such systems improves general cell performance. For example, the prepared $Na_{0.646}(Li_{0.207}Mg_{0.013}Ti_{0.78})O_2$ system displays an increase in reversible capacity of 8.5% and in rate performance of 13.5%, compared to those characteristics of a system without the addition of Mg. Computational results indicate that these improvements can be attributed to the slight widening of the Na-$O_6$ layer in the presence of Mg in the $(Li,Ti)O_6$ layer.

Preparation of Spherical Li4Ti5O12 and the Effect of Y and Nb Doping on the Electrochemical Properties as Anode Material for Lithium Secondary Batteries (리튬이온이차전지용 구형 Li4Ti5O12 음극 합성 및 Y와 Nb 도핑에 따른 전기화학적 특성)

  • Ji, Mi-Jung;Kwon, Yong-Jin;Kim, Eun-Kyung;Park, Tae-Jin;Jung, Sung-Hun;Choi, Byung-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.659-662
    • /
    • 2012
  • Yttrium (Y) and niobium (Nb) doped spherical $Li_4Ti_5O_{12}$ were synthesized to improve the energy density and electrochemical properties of anode material. The synthesized crystal was $Li_4Ti_5O_{12}$, the particle size was less than $1{\mu}m$ and the morphology was spherical and well dispersed. The Y and Nb optimal doping amounts were 1 mol% and 0.5 mol%, respectively. The initial capacity of the dopant discharge and charge capacity were respectively 149mAh/g and 143 mAh/g and were significantly improved compared to the undoped condition at 129 mAh/g. Also, the capacity retention of 0.2 C/5 C was 74% for each was improved to 94% and 89%. It was consequently found that Y and Nb doping into the $Li_4Ti_5O_{12}$ matrix reduces the polarization and resistance of the solid electrolyte interface (SEI) layer during the electrochemical reaction.

Synthesis of Lithium Titanate Whisker Using Ion-Exchange of Acid Treatment

  • Um Myeong-Heon;Lee Jin-Sik
    • Korean Journal of Materials Research
    • /
    • v.14 no.9
    • /
    • pp.627-633
    • /
    • 2004
  • Lithium titanate whiske($Li_{x}Ti_{4}O_9$) was prepared by an ion-exchange reaction. To this end, the initial material, potassium tetratitanate ($K_{2}Ti_{4}O_9{\cdot}nH_{2}O$) was prepared by calcination of a mixture of $K_{2}CO_3\;and\;TiO_2$ with a molar ratio of 2.8 at $1050^{\circ}C$ for 3 h, followed by boiling water treatment of the calcined products for 10 h. Fibrous potassium tetratitanate could be transformed into layered hydrous titanium dioxide ($H_{2}Ti_{4}O_9{\cdot}nH_{2}O$) through an exchange of $K^{+}\;with\;H^{+}$ using 0.075 M HCl. Also, lithium titanate whisker was finally prepared as $Li^{+}\;and\;H^{+}$ ions were exchanged by adding 20 mL of a mixture solution of LiOH and $LiNO_3$ to 1g whisker and stirring for $5\~15$ days. The average length and diameter of the $Li_{x}Ti_{4}O_9$ whiskers were $10\~20{\mu}m\;and\;1\~3{\mu}m$, respectively.

Novel Synthesis Method and Electrochemical Characteristics of Lithium Titanium Oxide as Anode Material for Lithium Secondary Battery

  • Kim Han-Joo;Park Soo-Gil
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.3
    • /
    • pp.119-123
    • /
    • 2005
  • Lithium titanium oxide as anode material for energy storage prepared by novel synthesis method. Li$_{4}$Ti$_{5}$O$_{12}$ based spinel-framework structures are of great interest material for lithium-ion batteries. We describe here Li$_{4}$Ti$_{5}$O$_{12}$ a zero-strain insertion material was prepared by novel sol-gel method and by high energy ball milling (HEBM) of precursor to from nanocrystalline phases. According to the X-ray diffraction and scanning electron microscopy analysis, uniformly distributed Li$_{4}$ Ti$_{5}$O$_{12}$ particles with grain sizes of 100nm were synthesized. Lithium cells, consisting of Li$_{4}$ Ti$_{5}$O$_{12}$ anode and lithium cathode showed the 173 mAh/g in the range of 1.0 $\~$ 3.0 V. Furthermore, the crystalline structure of Li$_{4}$ Ti$_{5}$O$_{12}$ didn't transform during the lithium intercalation and deintercalation process.

Properties of Li doped BST-MgO thick film Interdigital Capacitor (Li이 첨가된 BST-MgO Interdigital 커패시터의 특성연구)

  • Kim, Se-Ho;Han, Yong-Su;Koh, Jung-Hyuk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.286-286
    • /
    • 2007
  • Li이 첨가된 0.7(Ba,Sr)$TiO_3$-0.3MgO 후막 interdigital 커패시터를 연구하였다. Li이 첨가된 0.7(Ba,Sr)$TiO_3$-0.3MgO의 후막을 $Al_2O_3$ 기판 위에 형성하기 위하여 스크린 프린팅 방법을 이용하였다. $BaSrTiO_3$의 세라믹 물질은 높은 유전율(1MHz에서 500이상)과 낮은 유전 손실(1MHz에서 0.01)값을 가지고 있는 반면, $1350^{\circ}C$의 높은 온도에서 소결되는 단점이 있다. 따라서 본 연구에서는 $BaSrTiO_3$ 세라믹 물질의 유전특성을 향상시키고 $1350^{\circ}C$의 높은 소결온도를 낮추기 위해서, MgO(30wt%)와 Li(3wt%)을 $BaSrTiO_3$에 첨가하였다. 그리고 10um의 후막을 $Al_2O_3$ 기판 위에 스크린 프린팅 방법을 통해 형성한 후, 50um finger gap의 interdigital 커패시터를 Ag 전극을 이용하여 제작하였다. 샘플을 제작하기 전에, Frequency와 유전율의 상관관계를 알아보기 위해 3D simulator를 통해 시뮬레이션 하였고, 주파수와 온도별 유전 특성, 구조와 전암-전류에 대한 특성을 본 연구의 결과를 통해 토의 할 것이다.

  • PDF

A Study on the Precipitation Behaviors in Rapidly Solidified AI-Li-Ti Alloys (급냉응고된 AI-Li-Ti 합금의 시효석출거동에 관한 연구)

  • Kim, Jae-Dong;Jeong, Hae-Young
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.3
    • /
    • pp.279-286
    • /
    • 1995
  • As Al-Li based alloys are to find widespread use in aerospace and other structural applications in which their low-density high specific stiffness properties be exploited, their mechanical properties must adequately match those of the which they intended to replace. In order to develop these purposed, the precipitation behaviors of the rapidly solidified Al-Li-Ti alloys aged at various temperature were investigated. ${\delta}'$ phase precipitated homogeneously in the matrix during not only melt quenching but also aging at the aging temperature of $160^{\circ}C\;and\;210^{\circ}C$. The addition of the Ti in Al-Li alloy promoted the formation of $\delta$' phase. The addition of Ti on the ${\delta}'$ solvus line had a little effect over the thermodynamics ${\delta}'$ solvus line. The reason for these behavior was that the ${\delta}'$ phase was suppressed to precipitate as much as supercooling by melt quenching. The discontinuous precipitation reaction occurred by the preferential growth of ${\delta}'$ phase due to the migration of grain boundary provided the driving force dependent of solute concentration fluctuations.

  • PDF

Study on Ti-doped LiNi0.6Co0.2Mn0.2O2 Cathode Materials for High Stability Lithium Ion Batteries (고안정성 리튬이온전지 양극활물질용 Ti 치환형 LiNi0.6Co0.2Mn0.2O2 연구)

  • Jeon, Young Hee;Lim, Soo A
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.4
    • /
    • pp.120-132
    • /
    • 2021
  • Although the development of high-Nickel is being actively carried out to solve the capacity limitation and the high price of raw cobalt due to the limitation of high voltage use of the existing LiCoO2, the deterioration of the battery characteristics due to the decrease in structural stability and increase of the Ni content. It is an important cause of delaying commercialization. Therefore, in order to increase the high stability of the Ni-rich ternary cathod material LiNi0.6Co0.2Mn0.2O2, precursor Ni0.6Co0.2Mn0.2-x(OH)2/xTiO2 was prepared using a nanosized TiO2 suspension type source for uniform Ti substitution in the precursor. It was mixed with Li2CO3, and after heating, the cathode active material LiNi0.6Co0.2Mn0.2-xTixO2 was synthesized, and the physical properties according to the Ti content were compared. Through FE-SEM and EDS mapping analysis, it was confirmed that a positive electrode active material having a uniform particle size was prepared through Ti-substituted spherical precursor and Particle Size Analyzer and internal density and strength were increased, XRD structure analysis and ICP-MS quantitative analysis confirmed that the capacity was effectively maintained even when the Ti-substituted positive electrode active material was manufactured and charging and discharging were continued at high temperature and high voltage.