• Title/Summary/Keyword: Li-Ion Battery

Search Result 685, Processing Time 0.024 seconds

Electrochemical properties and Estimation of $LiMnO_{2}$ Active Material Synthesis for Secondary Batteries (2차 전지용 $LiMnO_{2}$ 활물질 합성의 전기화학적 특성과 평가)

  • Wee, Sung-Dong;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.210-215
    • /
    • 2002
  • This thesis is contents on the crystal grown by the solide phase method at $925^{\circ}C$ with orthorhombic structure that $LiMnO_{2}$ active material synthesised with precurse $Mn_{2}O_{3}$ and $LiOH.H_{2}O$ material to get three voltage level. The porosity analysis of the grown crystal in secondary batteries $LiMnO_{2}$ thin film is $1.323E+02\AA$ of the average pore diameter of powder particles and its structure to be taken the pore diameter was prepared. Adding voltage area to get properties of charge and discharge of which experiment result of $LiMnO_{2}$ thin film area 2.2V~4.3V, current and scan speed were 0.1mAh/g and $0.2mV/cm^{2}$ respectively, and properties of the charge and discharge to be got optimum experiment condition parameter and density rate of Li for analyze that unit discharge capacity with metal properties is 87mAh/g was 96.9[ppm] at 670.784[nm] wavelength, and density rate of Mn analyzed 837[ppm] at 257.610[nm]. It can be estimated the quality of thin film that wrong cell reject from the bottle of electrolyte. The results of SEM and XRD were the same that of original researchers.

  • PDF

Synthesis of Self-doped Poly(PEGMA-co-BF3LiMA) Electrolytes and Effect of PEGMA Molecular Weight on Ionic Conductivities (자기-도핑형 poly(PEGMA-co-BF3LiMA) 전해질의 합성과 이온전도도에 대한 PEGMA분자량의 영향)

  • Kim, Kyung-Chan;Ryu, Sang-Woog
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.4
    • /
    • pp.230-235
    • /
    • 2012
  • Polymer electrolytes consisted of $BF_3LiMA$ and 300 (PEGMA300) or 1100 (PEGMA1100) g $mol^{-1}$ of PEGMA were prepared and the electrochemical properties were characterized. Interestingly, the AC-impedance measurement shows $1.22{\times}10^{-5}S\;cm^{-1}$ of room temperature ionic conductivity from PEGMA1100 based solid polymer electrolytes while $8.54{\times}10^{-7}S\;cm^{-1}$ was observed in PEGMA300 based liquid polymer electrolytes. The more suitable coordination between lithium ion and ethylene oxide (EO) unit might be the reason of higher ionic conductivity which can be possible in PEGMA1100 based electrolytes since it has 23 EO units in monomer. The lithium ion transference number was found to be 0.6 due to the side reactions between $BF_3$ and lithium metal expecially for longer time but 0.9 was observed within 3000 seconds of measuring time which is strong evidence of a single-ion conductor.

Research Trend of Electrolyte Materials for Lithium Rechargeable Batteries (리튬 2차전지용 전해질 소재의 개발 동향)

  • Lee, Young-Gi;Kim, Kwang-Man
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.4
    • /
    • pp.242-255
    • /
    • 2008
  • In lithium-ion batteries(LIB), the development of electrolytes had mainly focused on the characteristics of lithium cobalt oxide($LiCoO_2$) cathode and graphite anode materials since the commercialization in 1991. Various studies on compatibility between electrode and electrolytes had been actively developed on their interface. Since then, as they try to adopt silicon and tin as anode materials and three components(Ni, Mn, Co), spinel, olivine as cathode materials for advanced lithium batteries, conventional electrolyte materials are facing a lot of challenges. In particular, requirements for electrolytes performance become harsh and complicated as safety problems are seriously emphasized. In this report, we summarized the research trend of electrolyte materials for the electrode materials of lithium rechargeable batteries.

The Influence of Impurities in Room Temperature Ionic Liquid Electrolyte for Lithium Ion Batteries Containing High Potential Cathode (고전압 리튬이차전지를 위한 LiNi0.5Mn1.5O4 양극용 전해질로써 상온 이온성 액체 전해질의 불순물 효과에 관한 연구)

  • Kim, Jiyong;Tron, Artur V.;Yim, Taeeun;Mun, Junyoung
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.2
    • /
    • pp.51-57
    • /
    • 2015
  • We report the effect of the impurities including water and bromide in the propylmethylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PMPyr-TFSI) on the electrochemical performance of lithium ion batteries. The several kinds of PMPyr-TFSI electrolytes with different amount of impurities are applied as the electrolyte to the cell with the high potential electrode, $LiNi_{0.5}Mn_{1.5}O_4$ spinel. It is found that the impurities in the electrolytes cause the detrimental effect on the cell performance by tracing the cycleability, voltage profile and Coulombic efficiency. Especially, the polarization and Coulombic efficiency go to worse by both impurities of water and bromide, but the cycleability was not highly influenced by bromide impurity unlike the water impurity.

Characteristics of Ni1/3Co1/3Mn1/3(OH)2 Powders Prepared by Co-Precipitation in Air and Nitrogen Atmospheres (공기와 질소 분위기에서 공침법으로 합성된 Ni1/3Co1/3Mn1/3(OH)2 분말의 특성 비교)

  • Choi, Woonghee;Park, Se-Ryen;Kang, Chan Hyoung
    • Journal of Powder Materials
    • /
    • v.23 no.2
    • /
    • pp.136-142
    • /
    • 2016
  • As precursors of cathode materials for lithium ion batteries, $Ni_{1/3}Co_{1/3}Mn_{1/3}(OH)_2$ powders are prepared in a continuously stirred tank reactor via a co-precipitation reaction between aqueous metal sulfates and NaOH in the presence of $NH_4OH$ in air or nitrogen ambient. Calcination of the precursors with $Li_2CO_3$ for 8 h at $1,000^{\circ}C$ in air produces dense spherical cathode materials. The precursors and final powders are characterized by X-ray diffraction (XRD), scanning electron microscopy, particle size analysis, tap density measurement, and thermal gravimetric analysis. The precursor powders obtained in air or nitrogen ambient show XRD patterns identified as $Ni_{1/3}Co_{1/3}Mn_{1/3}(OH)_2$. Regardless of the atmosphere, the final powders exhibit the XRD patterns of $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ (NCM). The precursor powders obtained in air have larger particle size and lower tap density than those obtained in nitrogen ambient. NCM powders show similar tendencies in terms of particle size and tap density. Electrochemical characterization is performed after fabricating a coin cell using NCM as the cathode and Li metal as the anode. The NCM powders from the precursors obtained in air and those from the precursors obtained in nitrogen have similar initial charge/discharge capacities and cycle life. In conclusion, the powders co-precipitated in air can be utilized as precursor materials, replacing those synthesized in the presence of nitrogen injection, which is the usual industrial practice.

Electrochemical Properties of LiNi0.4Mn0.3Co0.3O2 Cathode Material for Lithium Ion Battery (리튬이온전지용 정극활물질 LiNi0.4Mn0.3Co0.3O2의 전기화학적 특성)

  • Kong, Ming-Zhe;Kim, Hyun-Soo;Kim, Ke-Tack;Gu, Hal-Bon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.7
    • /
    • pp.650-654
    • /
    • 2006
  • [ $LiNi_{0.4}Mn_{0.3}Co_{0.3}O_2$ ] cathode material was synthesized by a mixed hydroxide method. Structural characterization was carried out using X-ray diffraction studies. Electrochemical studies were performed by assembling 2032 coin cells with lithium metal as an anode. DSC (Differential scanning calorimetry) data showed that exothermic reactions of $LiNi_{0.4}Mn_{0.3}Co_{0.3}O_2$ charged to 4.3 V versus Li started at high temperatures$(280\sim390^{\circ}C)$. The cell of $LiNi_{0.4}Mn_{0.3}Co_{0.3}O_2$ mixed cathode delivered a discharge capacity of 150 mAh/g at a 0.2 C rate. The capacity of the cell decreased with the current rate and a useful capacity of 134 mAh/g was obtained at a 2 C rate. The reversible capacity after 100th cycles was 126 mAh/g when a cell was cycled at a current rate of 0.5 C in $2.8\sim4.3V$.

Preparation of Spherical Li4Ti5O12 and the Effect of Y and Nb Doping on the Electrochemical Properties as Anode Material for Lithium Secondary Batteries (리튬이온이차전지용 구형 Li4Ti5O12 음극 합성 및 Y와 Nb 도핑에 따른 전기화학적 특성)

  • Ji, Mi-Jung;Kwon, Yong-Jin;Kim, Eun-Kyung;Park, Tae-Jin;Jung, Sung-Hun;Choi, Byung-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.659-662
    • /
    • 2012
  • Yttrium (Y) and niobium (Nb) doped spherical $Li_4Ti_5O_{12}$ were synthesized to improve the energy density and electrochemical properties of anode material. The synthesized crystal was $Li_4Ti_5O_{12}$, the particle size was less than $1{\mu}m$ and the morphology was spherical and well dispersed. The Y and Nb optimal doping amounts were 1 mol% and 0.5 mol%, respectively. The initial capacity of the dopant discharge and charge capacity were respectively 149mAh/g and 143 mAh/g and were significantly improved compared to the undoped condition at 129 mAh/g. Also, the capacity retention of 0.2 C/5 C was 74% for each was improved to 94% and 89%. It was consequently found that Y and Nb doping into the $Li_4Ti_5O_{12}$ matrix reduces the polarization and resistance of the solid electrolyte interface (SEI) layer during the electrochemical reaction.

Role of Sulfone Additive in Improving 4.6V High-Voltage Cycling Performance of Layered Oxide Battery Cathode (층상계 산화물 양극의 4.6V 고전압 특성 향상에서의 Sulfone 첨가제의 역할)

  • Kang, Joonsup;Nam, Kyung-Mo;Hwang, Eui-Hyeong;Kwon, Young-Gil;Song, Seung-Wan
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • Capacity of layered lithium nickel-cobalt-manganese oxide ($LiNi_{1-x-y}Co_xMn_yO_2$) cathode material can increase by raising the charge cut-off voltage above 4.3 V vs. $Li/Li^+$, but it is limited due to anodic instability of conventional electrolyte. We have been screening and evaluating various sulfone-based compounds of dimethyl sulfone (DMS), diethyl sulfone (DES), ethyl methyl sulfone (EMS) as electrolyte additives for high-voltage applications. Here we report improved cycling performance of $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ cathode by the use of dimethyl sulfone (DMS) additive under an aggressive charge condition of 4.6 V, compared to that in conventional electrolyte, and cathode-electrolyte interfacial reaction behavior. The cathode with DMS delivered discharge capacities of $198-173mAhg^{-1}$ over 50 cycles and capacity retention of 84%. Surface analysis results indicate that DMS induces to form a surface protective film at the cathode and inhibit metal-dissolution, which is correlated to improved high-voltage cycling performance.

Relationship between Particle Density and Electrochemical Properties of Spherical LiMn2-xMxO4 (M = Al, Mg, B) Spinel Cathode Materials (구형 스피넬계 LiMxMn2-xO4 (M = Al, Mg, B) 양극소재의 입자치밀도와 전지성능간의 상관관계에 대한 연구)

  • Kim, Kyoung-Hee;Jung, Tae-Gyu;Song, Jun-Ho;Kim, Young-Jun
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.2
    • /
    • pp.67-73
    • /
    • 2012
  • Spherical lithium manganese oxide spinel, $LiMn_{2-x}M_xO_4$ (M = Al, Mg, B) prepared by wet-milling, spray-drying, and sintering process has been investigated as a cathode material for lithium ion batteries. As-prepared powders exhibit various surface morphologies and internal density in terms of boron (B) doping level. It is found that the dopant B drives the growth of the primary particle and minimizes the surface area of the powder. As a result, the dopant enhances the internal density of the particles. Electrochemical tests demonstrated that the capacity of the synthesized material at 5 C could be maintained up to 90% of that at 0.2 C. The cycle performance of the material showed that the initial capacity was retained up to 80% even after 500 cycles under the high temperature of $60^{\circ}C$.

Development of Energy Management System for Micro-Grid with Photovoltaic and Battery system

  • Asghar, Furqan;Talha, Muhammad;Kim, Sung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.3
    • /
    • pp.299-305
    • /
    • 2015
  • Global environmental concerns and the ever increasing need of energy, coupled with steady progress in renewable energy technologies, are opening up new opportunities for utilization of renewable energy resources. Distributed electricity generation is a suitable option for sustainable development thanks to the load management benefits and the opportunity to provide electricity to remote areas. Solar energy being easy to harness, non-polluting and never ending is one of the best renewable energy sources for electricity generation in present and future time. Due to the random and intermittent nature of solar source, PV plants require the adoption of an energy storage and management system to compensate fluctuations and to meet the energy demand during night hours. This paper presents an efficient, economic and technical model for the design of a MPPT based grid connected PV with battery storage and management system. This system satisfies the energy demand through the PV based battery energy storage system. The aim is to present PV-BES system design and management strategy to maximize the system performance and economic profitability. PV-BES (photovoltaic based battery energy storage) system is operated in different modes to verify the system feasibility. In case of excess energy (mode 1), Li-ion batteries are charged using CC-CV mechanism effectively controlled by fuzzy logic based PID control system whereas during the time of insufficient power from PV system (mode 2), batteries are used as backup to compensate the power shortage at load and likewise other modes for different scenarios. This operational mode change in PV-BES system is implemented by State flow chart technique based on SOC, DC bus voltages and solar Irradiance. Performance of the proposed PV-BES system is verified by some simulations study. Simulation results showed that proposed system can overcome the disturbance of external environmental changes, and controls the energy flow in efficient and economical way.