• 제목/요약/키워드: Li metal battery (LMB)

검색결과 3건 처리시간 0.021초

PDMS/GO 복합체 박막의 리튬 금속 표면 개질: 리튬전극의 성장 제어 및 리튬금속전지(LMB) 성능 향상 (Surface Modification of Li Metal Electrode with PDMS/GO Composite Thin Film: Controlled Growth of Li Layer and Improved Performance of Lithium Metal Battery (LMB))

  • 이상현;석도형;정요한;손희상
    • 멤브레인
    • /
    • 제30권1호
    • /
    • pp.38-45
    • /
    • 2020
  • 리튬금속전지(LMB)는 매우 큰 이론 용량을 갖지만 단락(short circuit), 수명 감소 등을 야기하는 덴드라이트(dendrite)가 형성되는 큰 문제점을 갖고 있다. 본 연구에서는 poly(dimethylsiloxane) (PDMS)에 graphene oxide (GO) nanosheet를 고르게 분산시킨 PDMS/GO 복합체를 합성하였고 이를 박막 형태로 코팅하여 덴드라이트의 형성을 물리적으로 억제할 수 있는 막의 효과를 이끌어내었다. PDMS의 경우, 그 자체로는 이온 전도체가 아니기 때문에 리튬 이온의 통로를 형성시켜 리튬 이온의 이동을 원활하게 하기 위하여 5wt% 불산(HF)으로 에칭하여 PDMS/GO 박막이 이온전도성을 가질 수 있도록 하였다. 주사전자현미경(scanning electron microscopy, SEM)을 통해 전면 및 단면을 관찰하여 PDMS/GO 박막의 형상을 확인하였다. 그리고 PDMS/GO 박막을 리튬금속전지에 적용하여 실시한 배터리 테스트 결과, 100번째 사이클까지 쿨롱 효율(columbic efficiency)이 평균 87.4%로 유지되었고, 박막이 코팅되지 않은 구리 전극보다 과전압이 감소되었음을 전압 구배(voltage profile)를 통해 확인하였다.

PVdF-HFP/TiO2 나노복합체 보호층을 통한 리튬금속전지 음극의 전기화학적 성능 향상 (Nanostructured PVdF-HFP/TiO2 Composite as Protective Layer on Lithium Metal Battery Anode with Enhanced Electrochemical Performance)

  • 이상현;최상석;김동언;현준혁;박용욱;유진성;전소윤;박중원;신원호;손희상
    • 멤브레인
    • /
    • 제31권6호
    • /
    • pp.417-425
    • /
    • 2021
  • 고용량 배터리에 대한 요구가 증가에 따라 기존 음극재보다 높은 용량(3,860 mAh/g)과 낮은 전기화학적 전위(-3.040 V)를 갖는 리튬 금속 기반 음극재에 대한 연구가 활발하게 이루어지고 있다. 본 연구에서는 수열 합성을 통해 제작된 아나타제(anatase) 타입의 TiO2 나노 입자 기반한 PVdF-HFP/TiO2 복합체를 리튬 금속 음극의 계면 보호층으로 적용하였다. 결정구조 및 형상 분석을 통해 유/무기-리튬 나노복합체 박막의 형성을 확인하였다. 또한, 전지화학 테스트(사이클 테스트 및 전압 프로파일)를 통해 리튬 금속 음극의 전기화학 성능 은 복합체 보호막이 TiO2 10 wt%, 코팅 두께 1.1 ㎛의 조건에서 가장 개선된 전기화학적 성능(콜롱 효율 유지: 77 사이클 동안 90% 이상) 발현을 확인하였다. 이를 통해, 처리하지 않은 리튬 전극 대비 본 보호층에 의한 리튬 금속 음극의 성능 안정화/개선 효과가 검증되었다.

차세대 리튬 금속 전지 연구 및 개발을 위한 코인형 전지의 효율적 설계 (A Rational Design of Coin-type Lithium-metal Full Cell for Academic Research)

  • 이민규;이동현;한재웅;정진오;최현빈;이현태;임민홍;이홍경
    • 전기화학회지
    • /
    • 제24권3호
    • /
    • pp.65-75
    • /
    • 2021
  • 코인형 전지는 리튬 이차 전지 연구의 주요 평가 플랫폼으로써 새로운 소재 및 개념을 발굴하고 차세대 전지의 기초 연구에도 큰 기여를 하고 있다. 리튬 금속 전지는 500 Wh kg-1 이상의 에너지 밀도를 구현할 수 있어 유망한 차세대 리튬 이차 전지 후보군으로 고려되고 있으나, 덴드라이트 형태의 리튬 전착과 함께 극심한 부피 변화 및 표면적 증가라는 성능 열화에 매우 취약하다. 특히, 리튬 금속 전지의 수명은 전해질 양, 리튬 두께, 내부 압력 등과 같은 전지 설계 및 구조에 매우 의존하기 때문에 코인셀 수준에서의 성능 평가 및 신뢰성에 치명적이다. 따라서, 기존 코인셀 구조를 개선한 리튬 금속 음극 특화 전지 설계 및 규격화가 요구된다. 본 연구에서는 상용수준에서의 주요 전지 설계 인자인 극소량의 전해질과 높은 양극 로딩 레벨, 박막 리튬 사용 등의 환경에서 성능 및 재현성을 확보한 코인셀 구조를 제안한다. 양극과 음극의 면적비를 1에 근접하게 제어하여 비활성 공간을 최소화하고 용량 저하현상을 완화시켰다. 또한, 코인셀 내 압력을 정량화하여 압력의 균일성이 중요한 인자임을 규명하고 유연성 고분자 (PDMS) 필름 도입과 내부 부품의 변화를 통해 기존보다 높고 (0.6 MPa → 2.13 MPa) 균일한 압력(표준편차: 0.43 → 0.16)이 가하도록 개조하였다. 이를 통해 최적의 설계를 정립을 통해 기존보다 향상된 재현성을 확인하였다.